Claim Missing Document
Check
Articles

Found 5 Documents
Search

Perancangan Alarm Anti Maling pada Kendaraan Bermotor Dalam Posisi Parkir Menggunakan Sensor PIR ( Passive Infrared Receiver ) Dan Sensor Getar Berbasis Arduino uno R3 jhonny hendra cipta pangaribuan; Indra Gunawan; Heru Satria T; Sumarno .; Ika okta kirana
Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika Vol 4, No 1 (2021): Januari
Publisher : Akademi Ilmu Komputer Ternate

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47324/ilkominfo.v4i1.106

Abstract

Abstrak: Masyarakat merasa keamanan saat ini tidaklah kondusif, banyak perampokan dan penodongan terhadap kendaraan bermotor, khususnya di area parkir dan mengakibatkan kerugian materi yang bagi kelas masyarakat tertentu dinilai besar. Semakin meningkatnya kebutuhan masyarakat dalam penggunaan perangkat keamanan pada kendaraan bermotor mereka, terutama untuk sekarang ini belum banyak kendaraan yang di lengkapi sensor keamanan dari pabrikan pembuat kendaraan bermotor. Hal ini mendorong penulis untuk merancang perangkat pengaman pada kendaraan bermotor. Sistem pengaman ini menggunakan mikrokontroler Arduino Uno r3 yang dihubungkan dengan sensor PIR dan sensor SW-420 vibration sensor. Sensor PIR akan mendeteksi adanya pergerakan di sekitar kendaraan bermotor yang menyebabkan adanya perubahan tegangan. Perubahan tegangan dari sensor kemudian akan dijadikan sebagai data input oleh mikro kontroler dan diproses sehingga membuat LCD menyala serta buzzer/alarm berbunyi. Sistem pengaman ini mampu mendeteksi keberadaan manusia yang masuk dalam cakupan/coverage area sensor, maka suhu tubuh yang di pancarkan manusia akan di deteksi dan selanjutnya sensor akan aktif. Sedangkan sensor SW-420 akan mendeteksi getaran yang di timbulkan dari sentuhan atau getaran dari objek(manusia).Kata Kunci : Mikrokontroler, sensor PIR, buzzer, sensor SW-420 vibration.Abstract: The community feels that security at this time is not conducive. Many robberies and robbery of motorized vehicles, especially in the parking area, resulting in material losses, which are considered large for certain classes of society. Increasing needs of the community in the use of security devices on their motor vehicles, especially, for now, not many cars are equipped with safety sensors from manufacturers of motor vehicle manufacturers. This prompted the authors to design safety devices on motor vehicles. This security system uses an ARDUINO UNO R3 microcontroller connected to the PIR sensor and SW-420 vibration sensor. PIR sensor will detect any movement around the motorized vehicle, which causes a change in voltage. The sensor's voltage will then be used as input data by the microcontroller and processed so that the LCD will turn on, and the buzzer/alarm will sound. This safety system can detect humans who fall within the sensor coverage area, then the body temperature emitted by humans will be seen, and the sensor will then be active. In comparison, the SW-420 sensor will detect vibrations caused by touch or vibrations from objects (humans).Keywords: Microcontroller, PIR sensor, buzzer, SW-420 vibration sensor
Penentuan Keberhasilan Pembelajaran Daring Pada Masa Pandemi Covid-19 dengan Menggunakan Algoritma C4.5 di Stikom Tunas Bangsa Eko Ahadi; Indra Gunawan; Ika Okta Kirana; Dedy Hartama; Muhammad Ridwan Lubis
J-ICON : Jurnal Komputer dan Informatika Vol 10 No 1 (2022): Maret 2022
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jicon.v10i1.6446

Abstract

The C4.5 algorithm is an algorithm for classifying, grouping and predicting. The calculation of the RapidMiner C4.5 algorithm produces the same results according to the decision tree in the case of online learning success. Manual calculations using RapidMiner produce 23 successful online learning rules. Decision trees make it easier to understand the attribute that is prioritized as the most important attribute, root class and leaf class. The C4.5 algorithm as the application of data mining can result in successful online learning decisions during the Covid-19 pandemic. The decision tree in the case of the success of online learning during the Covid-19 pandemic is said to be successful.
Pengaruh Profesionalisme Dan Kepribadian Terhadap Kinerja Guru Bahrudi Efendi Damanik; Susiani Susiani; Fitri Rizki; Ika Okta Kirana
Jurnal Motivasi Pendidikan dan Bahasa Vol. 1 No. 4 (2023): Desember : Jurnal Motivasi Pendidikan dan Bahasa
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59581/jmpb-widyakarya.v1i4.2137

Abstract

This research was conducted aiming to determine the effect of professionalism, personality on teacher performance partially and simultaneously. The method used is a survey method with a quantitative approach, namely an approach that uses numbers that are processed through non-parametric statistical analysis in analyzing correlational research results. This research is included in the associative type, which contains a complete picture of the relationship between one variable and another variable, has a linear relationship type, because basically it wants to see the relationship between the independent variables, namely teacher professionalism and personality, with a sample size of 51 people. The conclusion of the research simultaneously that professionalism and personality variables have a positive and significant effect on teacher performance can be seen where the F-count value > F-table (27.672 > 2.790), partially the professionalism variable has a positive and significant effect on teacher performance where the t-count value > t-table (3.295 > 2.000), and partially the personality variable has a positive and significant effect on teacher performance where the value of tcount > ttable (3.884 > 2.000).
Hubungan Minat Belajar dan Asal Jurusan terhadap Prestasi Belajar Mahasiswa Program Studi Teknik Informatika STIKOM Tunas Bangsa Pematangsiantar Fitri Anggraini; Ika Okta Kirana; Zulaini Masruro Nasution
DIAJAR: Jurnal Pendidikan dan Pembelajaran Vol. 4 No. 1 (2025): Januari 2025
Publisher : Yayasan Pendidikan Penelitian Pengabdian Algero

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54259/diajar.v4i1.4021

Abstract

This research is a qualitative descriptive study which aims to determine the relationship between interest in learning and origin of major on the learning achievement of students in the STIKOM Tunas Bangsa Pematangsiantar Informatics Engineering Study Program. Interest in learning is one of the internal factors that influences learning achievement, while the origin of the major is the major that the student has taken while in high school. There are a total of 61 students from the STIKOM Tunas Bangsa Informatics Engineering Study Program in the Class of 2023 using purposive sampling because the Class of 2023 are still classified as new students and already have a Grade Point Average (GPA). The instruments used are observations and questionnaires, which have been tested for validity and reliability. The data was analyzed using a multiple linear regression analysis model. The results of the research show that there is no significant simultaneous influence between interest in learning and origin of major on the learning achievement of students in the Information Engineering Study Program at STIKOM Tunas Bangsa Pematangsiantar with a significance value of 0.007.
Model Prediksi Penjadwalan Produksi Energi Terbarukan dengan Algoritma XGBoost dan Analisis Interpretatif Menggunakan SHAP M. Safii; Husain; Ika Okta Kirana; Sasha Aiko Leana; Yuli Indahwati Gultom
Jurnal Sistem Informasi Triguna Dharma (JURSI TGD) Vol. 4 No. 4 (2025): EDISI JULI 2025
Publisher : STMIK Triguna Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53513/jursi.v4i4.11443

Abstract

Penjadwalan produksi energi terbarukan adalah kegiatan untuk menyeimbangkan antara pasokan dan permintaan energi dalam siklus sistem energi berkelanjutan. Berbagai jenis energi terbarukan seperti hidro, angin, matahari, dan lainnya akan melalui pemodelan prediktif dari jadwal produksi menggunakan algoritma Extreme Gradient Boosting (XGBoost) yang dikombinasikan dengan pendekatan interpretabilitas model menggunakan SHapley Additive exPlanations (SHAP). Penelitian ini menggunakan data sekunder dengan parameter Tahun, Negara, Energi Surya, Energi Angin, Energi Hidro, Energi Terbarukan Lainnya, dan Total Energi Terbarukan. Pemodelan menunjukkan bahwa energi angin dan energi matahari memiliki prediksi produksi yang meningkat ketika nilai fitur tinggi dan energi angin memiliki efek negatif ketika nilai fitur rendah. Penelitian ini memiliki kontribusi yang signifikan terhadap faktor yang mempengaruhi penjadwalan dan juga berpeluang untuk penerapan sistem cerdas dalam pengambilan keputusan sektor energi. Hasil penelitian ini dapat menjadi dasar untuk merumuskan strategi manajemen energi berkelanjutan yang memiliki potensi untuk mengintegrasikan kecerdasan buatan dan transparansi model dalam kebijakan energi terbarukan.