Claim Missing Document
Check
Articles

Found 4 Documents
Search

Implementasi Game Based Learning pada Pembelajaran Bahasa Inggris Nindian Puspa Dewi; Indah Listiowarni
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 3 No 2 (2019): Agustus 2019
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (951.377 KB) | DOI: 10.29207/resti.v3i2.885

Abstract

Games are media that can be used in the learning process to stimulate students in teaching and learning activities in the classroom. The game used is a game that has been adapted to the needs of learning in the classroom called game based learning or educational games. English subjects are difficult to learn by elementary students at SDN Bujur Barat II, so the use of learning media is needed to attract students' interest in learning the subject. In this study, an educational game was made based on the SD English curriculum consisting of writing, reading, listening, and speaking, which was built using the Ionic programming language and the PHP Framework.
Implementasi Naïve Bayessian dengan Laplacian Smoothing untuk Peminatan dan Lintas Minat Siswa SMAN 5 Pamekasan Indah Listiowarni
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 8, No 2 (2019): SEPTEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (270.24 KB) | DOI: 10.32736/sisfokom.v8i2.652

Abstract

Kurikulum 2013 memiliki beberapa perubahan dasar dari kurikulum sebelumnya, salah satunya adalah penyaluran dan penempatan siswa pada program peminatan. Setelah dilakukan klasifikasi peminatan, siswa akan diklasifikasikan lagi menggunakan nilai tes, yang disebut sebagai Lintas Minat Siswa. Penelitian ini berkonsentrasi untuk menerapkan metode Naive Bayessian pada sebuah sistem untuk menanggulangi permasalahan rumitnya proses klasifikasi dua tingkatan dan banyaknya data setiap tahunnya.Naive Bayes merupakan salah satu metode machine learning yang menggunakan perhitungan  probabilitas, dan memggunakan laplacian smoothing untuk menghindari hasil akhir bernilai 0. Nilai perhitungan accuracy dan error rate pada 720 data training dengan pengambilan 5 kali jumlah data testing  yang berbeda menggunakan naive bayessian dan laplacian smoothing, didapat nilai accuracy : 92,11% dan nilai error rate : 7,02%
Implementasi Holt-Winters Exponential Smoothing untuk Peramalan Harga Bahan Pangan di Kabupaten Pamekasan Nindian Puspa Dewi; Indah Listiowarni
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 11 No. 2 (2020): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/digitalzone.v11i2.4797

Abstract

Naik turunnya harga bahan pangan bisa menjadi penentu bagi setiap orang dalam menentukan makanan yang akan dikonsumsi, menyesuaikan dengan keadaan finansial mereka. Penelitian ini bertujuan untuk melakukan peramalan harga bahan pangan di masa mendatang dengan menggunakan data harga bahan pangan di masa sebelumnya. Dengan adanya peramalan harga, diharapkan dapat bermanfaat untuk membuat perencanaan pembelanjaan seperti perencanaan belanja bulanan dan penentuan harga jual makanan. Metode peramalan yang digunakan adalah Metode Holt-Winters Exponential Smoothing. Metode ini merupakan metode peramalan yang selain memperhatikan faktor trend juga melihat faktor musim. Penelitian ini hanya menggunakan harga bahan pangan di Kabupaten Pamekasan untuk periode 2012-2019. Hasil penelitian menunjukkan bahwa peramalan dengan menggunakan Metode Holt-Winters Exponential Smoothing menghasilkan nilai akurasi yang cukup baik dengan rata-rata nilai MAPE 1.2% untuk Model Multiplikatif dan 1.02% untuk Model Aditif. Hal ini menunjukkan bahwa Model Aditif lebih baik daripada Model Multiplikatif karena memiliki nilai MAPE yang lebih kecil. Kata kunci: holt-winters, penghalusan eksponensial, peramalan, harga, bahan pangan Abstract The fluctuation of food prices can be a determinant for everyone to choose what food they will consume, according to their financial condition. This study aims to forecast food prices in the future by using data on food prices in the past. With price forecasting, it can be useful for planning expenditures such as monthly shopping planning and determining the selling price of food. The method used in this research is the Holt-Winters Exponential Smoothing Method, which in addition to paying attention to trend factors, also observes season factors (seasonal). This study only uses food prices in Pamekasan Regency for the period 2012-2019. The results show that forecasting using the Holt-Winters Exponential Smoothing Method has a good accuracy value with an average MAPE value of 1.2% for the Multiplicative Model and 1.02% for the Additive Model. This result shows that Additive Model is better than Multiplicative Model. Keywords: holt-winters, exponential smoothing, forecasting, price, food.
Pemanfaatan Klasifikasi Soal Biologi Cognitive Domain Bloom’s Taxonomy Menggunakan KNN Chi-Square Sebagai Penyusunan Naskah Soal Indah Listiowarni; Nindian Puspa Dewi
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 11 No. 2 (2020): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/digitalzone.v11i2.4798

Abstract

The question manuscript is a document that contains a collection of exam questions that are commonly used by an educator to test the absorption of their students on the material that has been presented in class. Question manuscripts made by educators are made based on a pre-made question grid, and contain a certain percentage of each cognitive domain category in the bloom taxonomy. The level in the bloom taxonomic cognitive domain describes the level of difficulty of each item made, so that an educator must first make a formula in a planning script called a question grid. The items that have been classified based on the cognitive domain taxonomic level of bloom using the KNN classifier method and the Chi-square feature selection are proven to be the right combination, the classification results of these items will be used for the preparation of a text for exam questions with an adjusted percentage formula. With the question grid that has been made beforehand, it is hoped that this research can be used to facilitate educators in drafting appropriate exam questions for their students