Danang Adi Nugroho
PT Serena Indopangan Industri; Jalan Mohammad Ashari Nomor 35, Kelurahan Cibinong, Kecamatan Cibinong, Kabupaten Bogor 16911, Jawa Barat

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Simulator Proses Pengisian dan Pemasangan Tutup Botol Terkendali PLC Berbantuan Miniatur Konveyor Anang Dwi Purnomo; Arief Goeritno; Danang Adi Nugroho
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 4 (2021): Agustus 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (982.237 KB) | DOI: 10.29207/resti.v5i4.3189

Abstract

A miniature conveyor machine assisted by embedded systems and controlled by a programmable logic controller (PLC) has been fabricated with the operating mechanism is based on the detection of two different colors. The objectives of this research are to obtain a miniature machine is controlled by the PLC system, create a ladder diagram-based program structure, and measure the performance of the embedded system. Obtaining the machine is carried out through assembly of the conveyor frame, installation of all devices, and integrated wiring. The programming for the Omron PLC system is based on providing the CX-Programmer 64 bits, establishing algorithms and compiling ladder diagrams, and compiling and uploading processes. The performance measurement includes synchronization conditions between the simulator and the control system, observations of the readings of installed sensors for activating all devices on the output side, and observing the measurement of the filling process time and the installation of bottle caps assisted by the pneumatic system. The results of the performance during the process of filling and installing the lid obtained a success rate of 75%, based on four trials, three successes, and one failure. The general conclusion is that the embedded system that has been built can be used as a simulator for the mechanism of filling liquid into bottles and installing bottle caps, and it is as an implementation of instrumentation and automation processes.
Sistem Tertanam Berbasis PLC pada Simulator Pemberian Label dan Pemisahan Botol Danang Adi Nugroho; Arief Goeritno; Anang Dwi Purnomo
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (999.981 KB) | DOI: 10.29207/resti.v5i5.3455

Abstract

Utilization of photoelectric and fiberoptic sensors equipped with a number of actuators have been integrated into an embedded system based on a programmable logic controller (PLC). The labeling mechanism is based on the detection of the photoelectric sensor due to the photoelectric effect, while the bottle separation process is based on the detection of the fiberoptic sensor for two different colors. The objectives of this research includes three things, namely (i) produce a simulator controlled by a PLC system with assisted the help of sensors and actuators, (ii) create a ladder-based program structure, and (iii) measure the performance of the embedded system based on the performance of sensors and actuators. The research methods are conducted based on the research objectives through three stages, namely (i) the assembly of the conveyor frame, installation of the entire device, and integrated wiring; (ii) providing a 64-bit CX-Programmer, determining algorithms, compiling ladder, and compiling and uploading the entire program structure; and (iii) synchronization conditions and readings of on-board sensors for activation of all devices in the output line, and measurement of the processing time of stamping and bottle separation assisted by a pneumatic system. The results of the system performance during the labeling process for green and red bottles were fifteen times each, as was the case with the bottle separation process for green and red bottles, fifteen times each. The performance of the system is based on the success rate during the labeling process of 100%, while the success rate during the bottle separation process is 73.33%. The unsuccessful separation of bottles by 26.67% occurred in green bottles. The general conclusion is that a fabricated embedded system can be used as a simulator for a mechanical system of labeling and separating bottles based on bottle color.