Claim Missing Document
Check
Articles

Found 3 Documents
Search

Sentiment Analysis of An Internet Provider Company Based on Twitter Using Support Vector Machine and Naïve Bayes Method Farhan Hashfi; Dedy Sugiarto; Is Mardianto
ULTIMATICS Vol 14 No 1 (2022): Ultimatics : Jurnal Teknik Informatika
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ti.v14i1.2384

Abstract

Tweets from users in the form of opinions about a product can be used as a company evaluation of the product. To obtain this evaluation, the method that can be used is sentiment analysis to divide opinions into positive and negative opinions. This study uses 1000 data from Twitter related to an internet service provider company where the data is divided into two classes, namely 692 positive classes and 308 negative classes. In the Tweet there are still many words that are not standard. Therefore, previously carried out the initial process or preprocessing to filter out non-standard words. Before doing the classification, the data needs to be divided into training data and test data with a ratio of 90:10, then processed using the Support Vector Machine and Naïve Bayes techniques to get the results of the classification of positive opinions and negative opinions. The level of accuracy in the classification using the Support Vector Machine is 84% ​​and using Naïve Bayes is 82%.
Pelatihan Media Pembelajaran Google Apps Dan Scratch Untuk Guru Di Masa Pandemi Covid-19 Dian Pratiwi; Muhammad Najih; Teddy Siswanto; Is Mardianto
Jurnal Abdimas BSI: Jurnal Pengabdian Kepada Masyarakat Vol 5, No 2 (2022): Agustus 2022
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (404.351 KB) | DOI: 10.31294/jabdimas.v5i2.11529

Abstract

Model Pembelajaran Jarak Jauh (PJJ) menjadi salah satu cara yang dipandang efektif mencegah penyebaran Covid-19, walaupun tidak berarti pembelajaran ini lebih lebih baik dibandingkan dengan tatap muka langsung. Kendala yang umumnya dihadapi guru adalah pengelolaan sistem PJJ serta guru terbebani menuntaskan kurikulum. Waktu pembelajaran berkurang, mengakibatkan guru tidak mungkin menuntaskan beban jam mengajar, dan tidak mudah bagi guru berkomunikasi dengan orang tua siswa sebagai partner di rumah ketika anak menerapkan PJJ. Untuk meringankan beban akademik perlu dilakukan penyederhanaan administrasi dalam pembelajaran via daring ini, perlu memanfaatkan aplikasi yang sudah tersedia secara gratis, dalam kegiatan ini digunakan Google Apps dan Scratch. Pada pelaksanaannya, kegiatan dilakukan secara daring melalui kanal Zoom selama tiga jam sebanyak empat sesi, yaitu sesi pengenalan Google Apps, pengenalan Scratch, studi kasus Google Apps, dan studi kasus Scratch.  Berdasarkan hasil pengisian kuisioner dari 18 peserta yang telah mengikuti workshop ini, didapat 100% peserta sudah pernah menggunakan Google Apps, dan hanya 27% peserta yang pernah mengenal dan menerapkan Scratch sebagai media pembelajaran.
Face Recognition Implementation with MTCNN on Attendance System Prototype at Trisakti University Muhammad Azamy; Anung B. Ariwibowo; Is Mardianto
Indonesian Journal of Banking and Financial Technology Vol. 1 No. 1 (2023): January, 2023
Publisher : PT FORMOSA CENDEKIA GLOBAL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55927/fintech.v1i1.2812

Abstract

This study aims to implement Face Recognition with MTCNN on Attendance System Prototype at Trisakti University. People work hard to be faster in all parts of life due to the rapid development of technology, which has generated numerous innovations that aid them in their day-to-day tasks. The rapid growth of technology is evident in multiple arenas, including academics. Maintaining the accuracy of attendance data collecting is crucial for all educational institutions because it determines the institution's educational excellence. The word "tipsen" or delegated attendance circulates among academics as an example of data manipulation. To mitigate this, the author attempts to develop a biometric attendance system based on face recognition.