Tri Afirianto
Brawijaya University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Development of Non-Player Character for 3D Kart Racing Game Using Decision Tree Nashrul Azhar Mas'udi; Eriq Muhammad Adams Jonemaro; Muhammad Aminul Akbar; Tri Afirianto
Fountain of Informatics Journal Vol 6, No 2 (2021): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v6i2.4678

Abstract

Racing game is one of the genre that’s still popular today. Unity is one of many game engines one can use to develop a racing game. At Unity Asset Store, there is a free template called Micro-Game Karting which can only be played alone. In order to play player versus enemy mode, an artificial intelligence (AI) is needed for directing non-player character (NPC) who acts as the opponent. In racing game, the AI requires the use of movement algorithm and decision making system. For this study, the movement algorithm will use pathfinding. The algorithm is used as a guiding path when NPC is moving and avoiding obstacles in the way. Pathfinding will use waypoint system and raycasting to accomplish it. The decision making technique that will be used is decision tree. It functions as decision maker for NPC so it can determine the correct action to be done at certain time. Result of black box and white box testing showed NPC is functional. As for FPS (frame per second) test, performance suffers 0.2-0.3 FPS decrease for every addition of 2 NPCs. According to lap time test, the developed NPC is faster than ML NPC and driving test showed favorable outcome.
Pengembangan Non-Player Character (NPC) Menggunakan Unity ML-Agents Pada Karting Microgame Muhammad Yasir Anshari Haq; Muhammad Aminul Akbar; Tri Afirianto
Fountain of Informatics Journal Vol 7, No 1 (2022): Mei
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v7i1.5487

Abstract

AbstrakPerkembangan teknologi di bidang gim sekarang sudah sangat pesat terutama pada gim balapan. Gim balapan memiliki tujuan untuk memberikan pemain sebuah pengalaman yang menantang dan menyenangkan dalam sebuah balapan melawan mobil yang dikendalikan oleh gim tersebut atau biasa disebut dengan Non-Player Character (NPC). Pengembangan gim balapan tentunya tidak dapat lepas dari pengembangan NPC sebagai lawan main dari pemain. Pada umumnya NPC dikembangkan menggunakan metode waypoint untuk navigasi dalam melintasi trek balapan. Kekurangan dalam metode waypoint adalah harus diatur secara manual untuk setiap trek dan memakan waktu yang lama untuk mengatur waypoint pada setiap trek. Begitu juga untuk membuat NPC balap yang kompetitif dibutuhkan desain rule base yang kompleks. Peneliti mengusulkan menggunakan metode machine learning untuk mengatasi permasalahan tersebut. Unity3D menyediakan sebuah open-source API bernama Unity ML-Agents yang dapat digunakan untuk melatih NPC. NPC dilatih menggunakan metode reinforcement learning dengan Unity ML-Agents yang bertujuan untuk melatih NPC dengan cara memberikan reward agar mencapai hasil yang optimal. Hasil yang didapatkan dengan memanfaatkan Unity ML-Agents adalah NPC yang dapat melintasi berbagai macam trek dan dapat menghindari tabrakan. NPC yang telah dikembangkan dengan Unity ML-Agents juga mendapatkan waktu total yang lebih sedikit dibandingkan dengan waktu total yang diperlukan pemain untuk menempuh 3 lap putaran pada suatu trek yaitu 55,9 detik dibandingkan dengan 59,4 detik.Kata kunci: gim balapan, non-player character, unity ml-agents, reinforcement learning.Abstract[Non-Player Character (NPC) Development Using Unity ML-Agents in Karting Microgame] Nowadays, the development of game technology is very fast, especially in racing games. The racing game aims to provide players with a challenging and fun experience in a race against cars controlled by the game or commonly known as the Non-Player Character (NPC). Of course, the development of a racing game cannot be separated from the development of NPCs as opponents of the players. In general, NPCs were developed using the waypoint method for navigation across racetrack. The disadvantage of the waypoint method is that it must be set manually for each track, and it takes a long time to set the waypoint for each track. Likewise, making a competitive racing NPC requires a complex rule base design. Researchers suggest using machine learning methods to overcome these problems. Unity3D provides an open-source API called Unity ML-Agents which can be used to train NPCs. NPCs are trained using the reinforcement learning method with Unity ML-Agents which aims to train NPCs by providing rewards to achieve optimal results. The results obtained by utilizing Unity ML-Agents are NPCs that can traverse various kinds of tracks and can avoid collisions. NPCs that have been developed with Unity ML-Agents also get less total time compared to the total time required for a player to take 3 laps on a track, which is 55.9 seconds compared to 59.4 seconds.Keywords: racing game, non-player character, unity ml-agents, reinforcement learning.
The Development of Malang City Virtual Tourism for Preservation of Traditional Culture using React 360 Herman Tolle; Primananda Kurnia S.; Wibisono Sukmo Wardhono; Ratih Kartika Dewi; Lutfi Fanani; Tri Afirianto
MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Vol 15, No 1 (2023): MATICS
Publisher : Department of Informatics Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/mat.v15i1.23000

Abstract

Malang is one of the tourist destinations in East Java, and always visited by both domestic and foreign tourists. However, Malang isn’t the first destination in tourism, this is due to the lack of intense promotion. Virtual tourism is a virtual reality technology for promoting tourism. Based on these problems, the researchers developed a virtual reality application that can provide immersive experiences to users assembled with tourist destinations in Malang. Application was developed using React 360 framework, because of its ease of development and can be developed for various platforms. The Software Development Life Cycle (SDLC) is the waterfall method. The implementation using VR Headset and VR Controller. In testing, researchers conducted functional testing and non-functional testing. Functional testing is done using black box testing and non-functional testing is done by the System Usability Scale (SUS) method. The results of functional testing using black box are 100% valid. In the usability test, the System Usability Scale (SUS) questionaire obtained a score of 89. From the scores that have been obtained, this application is acceptable, with Grade A and adjective rating Excellent.