Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Design of a Control System for Hybrid Quadcopter Tilt Rotor Based on Backward Transition Algorithm Darwito, Purwadi Agus; Agustina, Nilla Perdana; Ahnaf, Hudzaifa Dhiaul; Roosydi, Syahrizal Faried; Pratama, Detak Yan; Biyanto, Totok Ruki
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.22594

Abstract

An Unmanned Aerial Vehicle (UAV) is an unmanned aerial vehicle that can be controlled using either automatic or manual control. UAVs are divided into two types: rotary-wing, which uses rotating propellers to fly the aircraft, and fixed-wing, which uses fixed wings to fly the aircraft. One of the advanced developments in UAV technology is the Hybrid Vertical Take-Off Landing Quadrotor Tiltrotor Aircraft (QTRA) system, which combines the quadrotor UAV system, classified under rotary-wing, with the fixed-wing UAV system. This allows for vertical takeoff and landing as well as the ability to cruise at maximum speed. In the transition between flight modes, from quadcopter to fixed-wing and vice versa, the transition is carried out by changing the thrust direction of the two front UAV rotors from horizontal to vertical and vice versa. The change in thrust angle on the rotor is referred to as a tilt rotor. The problem that arises from changing the aircraft mode from fixed-wing to quadcopter is controlling the UAV's transition mode, which must not lose its lift force. Therefore, the tilt angle must be changed as quickly as possible. To solve this issue, a Hybrid VTOL Quadrotor Tiltrotor aircraft concept was designed with fast response, controlled by a Proportional Derivative (PD) controller. The results of the PD control system response were tested in simulations by observing the X and Z positions of the UAV, which can stabilize the position during the transition. The success criteria targeted for a stable response include a tilting angle with a settling time of 7 seconds, an overshoot height of 16 meters, and a steady-state error approaching zero. From the transition simulation tests, the system response data showed performance with an X-axis settling time of 37 seconds, a steady-state error value of 0.1 meters, and an overshoot of 0.4%.
Performance Analysis of PID and SMC Control Algorithms on AUV under the Influence of Internal Solitary Wave in the Bali Deep Sea Wahyuadnyana, Kadek Dwi; Indriawati, Katherin; Darwito, Purwadi Agus; Aufa, Ardyas Nur; Tnunay, Hilton
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.23800

Abstract

Autonomous Underwater Vehicles (AUVs) play a crucial role in deep-sea exploration, but their stability is often compromised by Internal Solitary Waves (ISWs) and nonlinear disturbances in stratified waters. This study aims to evaluate the performance of two control algorithms, Proportional-Integral-Derivative (PID) and Sliding Mode Control (SMC), in mitigating ISW effects on AUV trajectory tracking. Simulations were conducted in Simulink (MATLAB), modeling AUV dynamics under ISW disturbances with intensities ranging from 0% to 100%. The results reveal that both PID and SMC algorithms experience significant performance degradation as ISW intensity increases, with Root Mean Square Error (RMSE) values rising exponentially between 50% and 75% disturbance levels. While SMC offers better resilience to nonlinear disturbances than PID, neither algorithm fully compensates for high ISW intensities. These findings highlight the limitations of conventional control strategies and underscore the need for more robust, adaptive algorithms for reliable deep-sea AUV operations. Future work will explore Nonlinear Model Predictive Control (NMPC) for improved stability in complex marine environments.