Arif Fajar Solikin
Universitas AMIKOM Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cluster Evaluation Weighing Intercomparison Data with Self Organizing Maps Algorithm Arif Fajar Solikin; Kusrini Kusrini; Ferry Wahyu Wibowo
SISFOTENIKA Vol 11, No 2 (2021): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30700/jst.v11i2.1153

Abstract

Laboratory intercomparison is one of method to determine the ability and assess the performance of a laboratory. Laboratory performance can be seen from the evaluation of the En ratio’s value, which is a comparison between the difference in the value test of the participant's laboratory with reference’s laboratory and the difference in the square root of the uncertainty value form participant's laboratory and reference’s laboratory. The laboratory is declared equivalent if the En value is in the range of En ≤|1|. Intercomparisons evaluation can also be done by utilizing one of the data mining technologies in the form of clustering. Clustering is done by using self-organizing maps algorithm, which is an unsupervised learning algorithm. The advantage of clustering in evaluating intercomparation data lies in its ability to group data into several clusters that have closeness or similarity in characteristics / traits / characters of data, making it easier for intercomparation organizers to provide analytical recommendations for improving laboratory performance. Intercomparation data are grouped based on the homogeneity between members in one cluster and heterogeneity among the clusters. To get the best number of clusters, evaluation is carried out through three testing methods, pseudo-F statistic, icdrate and davies bouldin index. From several experiments, the largest pseudo-F statistic value was 167.53, the smallest icdrate value was 0.071 and the smallest DBI value was 0.053 for the 1000 g artifact. As for the 200 g artifact, the largest pseudo-F statistic value was 104.86, the smallest icdrate value was 0.289 and the smallest DBI value was 0.306
Analisis Cluster Data Interkomparasi Anak Timbangan dengan Algoritma Self Organizing Maps Arif Fajar Solikin; Kusrini Kusrini; Ferry Wahyu Wibowo
Jurnal Teknik Informatika dan Sistem Informasi Vol 7 No 2 (2021): JuTISI
Publisher : Maranatha University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28932/jutisi.v7i2.3698

Abstract

Intercomparison was conducted to determine the ability and the performance of the laboratory. Intercomparison results are usually expressed in the range of En ratio values (En ?|1|) which express the equivalence of one laboratory with other laboratories. If the laboratory is declared unequal, then it needs to identify the source of the problem by itself. To make it easier, it can be done by Clustering which is one of the data mining techniques. Clustering is done by applying a self organizing map algorithm on the KNIME (Konstanz Information Miner) analytic tools. Several experiments were carried out with different layer size and data normalization status from one experiment to another experiment. The results were analyzed through pseudo F statistical test and icdrate test. The largest pseudo F statistic value was obtained from the 8th experiment (setting the layer size 2x2 without data normalization) with a pseudo F statistic value of 167.53 for 1kg artifacts and a Pseudo F statistic value of 104.86 for 200 g artifacts where the optimum number of clusters are 4. The smallest icdrate value was obtained from the 5th experiment (setting the 2x3 layer size without data normalization) with an icdrate value of 0.0713 for 1kg artifacts and icdrate value of 0.2889 for 200g artifacts with the best number of clusters being 6. From 12 laboratories can be grouped into 6 groups where each group has the same identification. There are groups 1, 3 and 6 have 1 member, while groups 2, 4 and 5 have 3 members.