Claim Missing Document
Check
Articles

Found 3 Documents
Search

PERANCANGAN APLIKASI INFORMASI TITIK GEMPA DI INDONESIA BERBASIS ANDROID Cucut Susanto
SISFOTENIKA Vol 3, No 2 (2013): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (592.809 KB) | DOI: 10.30700/jst.v3i2.51

Abstract

Abstract: Design of Earthquake Point Information Android-Base Application in Indonesia. Indonesia is a country located in the ring of fire or fire circle where an area often experience earthquakes and volcanic eruptions caused by the friction of the earth. This area is shaped like a horseshoe covers an area of 40,000 km long. Thus require an information about the rapid earthquake information and notifications directly in order to avoid things that are not desirable. For example, when the earthquake and tsunami in Aceh on Sunday morning, December 26, 2004. Magnitude 8.5 on the Richter scale resulted Approximately 500,000 lives lost in an instant around the edge of the world that is directly adjacent to the Indian Ocean. And Indonesia alone Approximately 126,000 casualties casualties. This is all due to the lack of information about earthquake faced. The purpose of this study is: to design an application that can provide location information where the latest quake which areas are affected by the earthquake by using mobile devices and can provide locations of seismic information can be viewed as Maps and Google Maps. The research method is the Data Collection Techniques to approach literature studies and experiments and observations.The results showed that the application provides a solution to the Indonesian public about the latest earthquake information, so that information is mobile earthquake can be accessed anytime and anywhere with the help of BMKG. Keywords: Design, Point Earthquake, Android.
Aplikasi Layanan Keamanan Dan Ketertiban Kampus Berbasis Web Pada Universitas Cokroaminoto Palopo Nurlina Nurlina; Cucut Susanto
E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Vol 5 No 1 (2016): e-jurnal JUSITI
Publisher : Universitas Dipa Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Universitas Cokroaminoto (UNCOK) Palopo yang berada di Palopo senantiasa dijadikan sebagai jalan alternative bagi pengendara mobil maupun motor. Setiap ada demo di depan kampus UNCOK Palopo maka banyak kendaraan yang dialihkan melewati jalan masuk kampus. Mereka yang melalui jalan kampus belum tentu ada keperluan dengan kampus UNCOK.  Kendaraan yang masuk/ keluar kampus tidak melalui pemeriksaan STNK (Surat Tanda Nomor Kndaraan) atau SIM (Surat Izin Mengemudi), kendaraan keluar masuk dengan begitu saja, makanya tidak bisa teridentifikasi mana kendaraan dosen, mahasiswa atau staff khususnya di Fakultas Teknik Informatika.  Sehingga dapat mengundang kerawanan adanya kejahatan pencurian terhadap kendaraan di kampus karena dalam perpakiran masuk maupun keluar tidak ada penjaga khusus untuk masalah kendaraan.Pembuatan system keamanan dan ketertiban kampus UNCOK Palopo khususnya Fakultas Teknik Informatika bertujuan untuk merancang system yang baik untuk keamanan kendaraan yang keluar-masuk kampus dengan menggunakan bantuan computer dan alat untuk mendeteksi identitas tamu, dosen dan mahasiswa yaitu Barcode sehingga mengurangi tindak pencurian kendaraan.
2Deep Model Prediksi Berbasis Weighting Average Untuk Time Series Data Arwansyah; Cucut Susanto; Nurdiansah
SISFOTENIKA Vol. 14 No. 2 (2024): SISFOTENIKA
Publisher : STMIK PONTIANAK

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30700/sisfotenika.v14i2.462

Abstract

In time series data analysis, the need for accurate and efficient predictive models is becoming increasingly urgent as data complexity rises. This study proposes the 2Deep Model, a hybrid approach that combines Bidirectional Long Short-Term Memory (Bi-LSTM) and Stacked LSTM, utilizing the Weighting Average technique to optimize predictions. This method was chosen for its potential in handling long-term dependencies and temporal complexity in data. Experiments were conducted on five datasets: ETTh1, ETTh2, ETTm1, ETTm2, and AQI Shanghai. The results show that the proposed model achieves low Mean Squared Error (MSE) and Mean Absolute Error (MAE) values on the first four datasets, with an average MSE of 0.0289 and an MAE of 0.0971, along with a relatively high R-squared (R²) value. However, for the AQI Shanghai dataset, the model's performance declined, with higher MSE and MAE values and a lower R². These findings indicate that the 2Deep Model holds significant potential for time series data prediction applications, although there is room for improvement when dealing with more diverse datasets. Future research suggestions include further model optimization and exploring other hybrid methods to enhance model generalization.