Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Market Basket Dengan Algoritma Apriori Pada Transaksi Penjualan Di Freshfood Ahmad Rifqy Alfiyan; Ahmad Hafidzul Kahfi; Mochammad Rizky Kusumayudha; Muhammad Rezki
IJCIT (Indonesian Journal on Computer and Information Technology) Vol 4, No 1 (2019): IJCIT Mei 2019
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (849.156 KB) | DOI: 10.31294/ijcit.v4i1.4968

Abstract

AbstrakDengan semakin banyaknya minimarket yang saling bersaing membuat pihak minimarket melakukan berbagai macam promosi. Selain itu ketersediaan data transaksi yang menumpuk serta belum adanya pengorganisiran promosi sesuai dengan keadaan. Data transaksi penjualan yang ada hanya dijadikan arsip tanpa dimanfaatkan dengan baik. Pada dasarnya kumpulan data memiliki informasi yang sangat bermanfaat. Akan tetapi pemrosesan data yang banyak akan membutuhkan waktu yang lama. Sehingga dalam proses pengolahan data tersebut membutuhkan metode yang tepat. Kumpulan data penjualan yang dimiliki sebenarnya dapat diolah menggunakan data mining untuk melihat pola pembelian pelanggan, dengan data mining untuk data yang besar tidak akan terbuang begitu saja dan dapat bermanfaat sehingga dapat memberikan keuntungan kepada perusahaan. Pada penelitian ini, proses pengolahan data menggunakan Algoritma Apriori yang merupakan salah satu metode data mining yang bertujuan untuk mencari pola assosiasi berdasarkan pola belanja yang dilakukan oleh konsumen, sehingga bisa diketahui item-item barang apa saja yang sering dibeli secara bersamaan. Hasil penelitian ini adalah dengan algoritma apriori dapat membentuk pola kombinasi itemset. Pengetahuan yang dihasilkan dari pola kombinasi tersebut dapat digunakan sebagai pedoman dalam penyusunan market basket.Kata Kunci: Data Mining, Algoritma Apriori, Transaksi Penjualan, Metode Asosiasi AbstractWith the increasing number of competing minimarkets, minimarkets carry out various types of promotions. In addition, data transactions accumulate and there has been no organizing of promotions in accordance with the circumstances. Sales transaction data that can only be used archives that can be used properly. Basically the data set has very useful information. However, needing a lot of data will require a long time. Required in processing the data requires the right method. Collection of sales data collected can actually be processed using data mining to see the pattern of customer purchases, by mining data for large data will not be wasted and can be useful so that it can provide benefits to the company. In this study, the data processing uses the Apriori Algorithm, which is one method of data mining that aims to find patterns of associations based on shopping patterns carried out by consumers, so that items can be identified which can be purchased simultaneously. The results of this study are application methods that can create itemset combination patterns. Knowledge generated from a combination pattern can be used as a guide in market basket collection.Keywords: Data Mining, Apriori Algorithms, Sales Transactions, Association Methods
Decision Support System for Determination of Promotion Using Simple Additive Weighting Ahmad Hafidzul Kahfi; Mochammad Rizky Kusumayudha; Ahmad Fachrurozi
Jurnal Mantik Vol. 4 No. 4 (2021): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mantik.Vol4.2021.1168.pp2388-2394

Abstract

The human resources of a company greatly influence many aspects that determine the success of the work of the company. One of the most important processes in the human resources department of a company or business entity is the promotion process. When determining which employees are eligible for promotion, it is difficult for companies to make a decision. This is because many employees are highly qualified and the number of positions required is limited. In addition, the processing of employee evaluation data in companies is still done manually, so that considering a large number of employees, the possibility of input errors is quite high and takes a relatively long time. For that, we need a decision support system that can assist companies in selecting employees to be promoted to various positions. The method used is the Simple Additive Weighting method, which starts from finding problems, determining goals, determining standards and alternatives, determining weights until the final result is obtained, then carrying out a ranking process, which will select the alternatives given so that employees who deserve to be promoted can be determined.