Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Sisfokom (Sistem Informasi dan Komputer)

Perbandingan Klassifikasi SMS Berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier Devi Irawan; Eza Budi Perkasa; Yurindra Yurindra; Delpiah Wahyuningsih; Ellya Helmud
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 10, No 3 (2021): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v10i3.1302

Abstract

Short message service (SMS) adalah salah satu media komunikasi yang penting untuk mendukung kecepatan pengunaan ponsel oleh pengguna. Sistem hibrid klasifikasi SMS digunakan untuk mendeteksi sms yang dianggap sampah dan benar. Dalam penelitian ini yang diperlukan adalah mengumpulan dataset SMS, pemilihan fitur, prapemrosesan, pembuatan vektor, melakukan penyaringan dan pembaharuan sistem. Dua jenis klasifikasi SMS pada ponsel saat ini ada yang terdaftar sebagai daftar hitam (ditolak) dan daftar putih (diterima). Penelitian ini menggunakan beberapa algoritma seperti support vector machine, Naïve Bayes classifier, Random Forest dan Bagging Classifier. Tujuan dari penelitian ini adalah untuk menyelesaikan semua masalah SMS yang teridentifikasi spam yang banyak terjadi pada saat ini sehingga dapat memberikan masukan dalam perbandingan metode yang mampu menyaring dan memisahkan sms spam dan sms non spam.  Pada penelitian ini menghasilkan bahwa Bagging classifier algorithm ini mendapatkan ferformance score tertinggi dari algoritma yang lain yang dapat dipergunakan sebagai sarana untuk memfiltrasi SMS yang masuk ke dalam inbox pengguna dan Bagging classifier algorithm dapat memberikan hasil filtrasi yang akurat untuk menyaring SMS yang masuk.