Nanik Wuryani
Fakultas Ilmu Komputer, Sekolah Tinggi Ilmu Komputer Nusa Mandiri Jakarta

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan Nanik Wuryani; Sarifah Agustiani
JURNAL TEKNIK KOMPUTER AMIK BSI Vol 7, No 2 (2021): JTK-Periode Juli 2021
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.577 KB) | DOI: 10.31294/jtk.v7i2.10468

Abstract

Covid-19 merupakan virus yang menyebar dan meluas sehingga berubah menjadi suatu pandemi. Virus Covid-19 menyerang melalui organ vital manusia yaitu paru-patu, oleh karena itu peneliti lebih berfokus untuk mengidentifikasi Covid-19 pada paru-paru. Penelitian ini dilakukan dengan menggunakan citra CT Scan paru-paru dan bertujuan untuk mendeteksi ada tidaknya virus dengan cara mengklasifikasikan citra Covid-19 ke dalam tiga kelas menggunakan algoritma Random Forest serta mengkombinasikannya dengan menyertakan beberapa ekstraksi fitur yaitu Haralick, Color Histogram, dan Hu-Moments. Penelitian dimulai dengan hanya memasukkan satu fitur ke dalam percobaan, lalu mengkombinasikan dengan fitur yang lain, kemudian membandingkannya menggunakan klasifikasi oleh algoritma lain seperti K-Nearest Neighbor (KNN), Decision Tree, Linear Discriminant Analysis (LDA), Logistic Regression, Support Vector Machine (SVM), dan Naive Bayes. Hasil penelitian menunjukkan bahwa akurasi tertinggi dihasilkan oleh algoritma Random Forest dengan memasukkan fitur Haralick dan Color Histogram ke dalam proses yaitu sebesar 96,9%, diikuti oleh KNN sebesar 96,5%, Decision Tree sebesar 95,5%, dan yang paling rendah yaitu Naive Bayes sebesar 42,4%
PENERAPAN DATA MINING TERHADAP DATA COVID-19 MENGGUNAKAN ALGORITMA KLASIFIKASI Rizka Dahlia; Nanik Wuryani; Sri Hadianti; Windu Gata; Arina Selawati
Jurnal Informatika Vol 21, No 1 (2021): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v21i1.2868

Abstract

Coronavirus 2019 or more commonly referred to as COVID-19 is a type of virus that attacks the respiratory system. Until now the number of spread and the number of deaths caused by this virus continues to increase. As of April 21, 2020, based on data from the WHO, the total number of cases infected with this virus reached 2,397,217 with 162 deaths from all over the world. For South Korea itself, as of March 21, 2020, the total number of infected cases was 10,683 with a total of 237 deaths. In this study, researchers conducted data processing on the spread of COVID-19 in South Korea with Rapidminer using a classification algorithm, namely Naïve Bayes, C4.5, and K-Nearest Neighbor by performing the stages of selection, preprocessing, transfotmating, data mining and interpretation or evaluating the quality of the best accuracy of 80.79% with AUC of 0.881 achieved by the Naïve Bayes algorithm. The distribution of the data found that the influential attribute of the isolated class factor from the patient contained in the sex attribute where more women experienced isolation. Keywords— COVID-19, data mining, classification, C4.5, Naïve Bayes, K-NN
Pengenalan Wajah Menggunakan Pembelajaran Mesin Berdasarkan Ekstraksi Fitur Pada Gambar Wajah Berkualitas Rendah Siti Khotimatul Wildah; Sarifah Agustiani; Ali Mustopa; Nanik Wuryani; Hendri Mahmud Nawawi; Rizky Ade Safitri
INFOTECH : Jurnal Informatika & Teknologi Vol 2 No 2 (2021): INFOTECH: Jurnal Informatika & Teknologi
Publisher : LPPMPK - Sekolah Tinggi Teknologi Muhammadiyah Cileungsi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (323.22 KB) | DOI: 10.37373/infotech.v2i2.189

Abstract

Wajah merupakan bagian dari sistem biometric dimana wajah manusia memiliki bentuk dan karakteristik yang berbeda antara satu dengan lainnya sehingga wajah dapat dijadikan sebagai alternatif pengamanan suatu sistem. Proses pengenalan wajah didasarkan pada proses pencocokan dan perbandingan citra yang dimasukan dengan citra yang telah tersimpan di database. Akan tetapi pengenalan wajah menjadi permasalahan yang cukup menantang dikarenakan illuminasi, pose dan ekspresi wajah serta kualitas citra. Oleh sebab itu pada penelitian ini bertujuan untuk melakukan pengenalan wajah dengan menggunakan metode machine learning seperti Logistic Regression (LR), Linear Discriminant Analysis (LDA), Decision Tree Classifier, Random Forest Classifier (RF), Gaussian NB, K Neighbors Classifier (KNN) dan Support Vector Machine (SVM) dan beberapa metode ekstraksi fitur Hu-Moment, HOG dan Haralick pada dataset Yale Face. Berdasarkan pengujian yang dilakukan metode ekstraksi fitur gabungan Hu-Moment, HOG dan Haralick dengan algoritma Linear Discriminant Analysis (LDA) menghasilkan nilai akurasi tertinggi sebesar 79,71% dibandingkan dengan metode ekstraksi fitur dan algoritma klasifikasi lainnya.