Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pemanfaatan Citra Multi-Functional Transport Satellite untuk Estimasi Petir di Wilayah Bandara Soekarno Hatta Cengkareng dan Juanda Surabaya Defri Mandoza; Hartono Hartono; Sigit Heru Murti
Majalah Geografi Indonesia Vol 30, No 2 (2016): Majalah Geografi Indonesia
Publisher : Fakultas Geografi, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2536.612 KB) | DOI: 10.22146/mgi.15638

Abstract

Pengaruh koreksi atenuasi radar cuaca terhadap perhitungan estimasi curah hujan di Jawa Timur Ahmad Kosasih; Hartono Hartono; Retnadi Heru Jatmiko
Jurnal Teknosains Vol 10, No 2 (2021): June
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/teknosains.53452

Abstract

Rainfall estimation using band C weather radar creates uncertainty in the results of its estimation accuracy. The cause is meteorological and non-meteorological disturbances that affect the reflectivity raw data (dBz), one of which is attenuation due to rain, especially with heavy and very heavy intensity. This study aims to evaluate the attenuation correction ability of the reflectivity raw data generated by the weather radar against the calculation of rainfall estimates at the Juanda Sidoarjo Meteorological Station, as well as the best attenuation correction coefficient to be applied in the processing of rainfall estimates by weather radar. The method used to perform attenuation correction is Z-based attenuation correction (ZATC). The calculation of attenuation correction using the ZATC method uses several α and β coefficients while the Z-R relation (Z = 200R1.6) is used to calculate the estimated rainfall before and after attenuation correction. The results showed that the attenuation correction of the C band weather radar reflectivity raw data was able to provide an increase in the accuracy of rainfall estimation where in the estimation of rainfall from a weather radar without the attenuation correction stage of the raw data, an accuracy value of 70.8% was obtained, while applying the attenuation correction using several The α and β coefficients obtained an increase in the accuracy of rainfall estimation between 72.5% to 86.9%. The best α and β coefficients for attenuation correction of weather radar reflectivity (dBz) can be applied in obtaining a more accurate rainfall estimate, namely the α and β coefficients according to Krämer and Verworn which are able to provide an increase in the accuracy of rainfall estimation by 16.1%.
Pemodelan Spasial Erosi Kualitatif Berbasis Raster (Studi Kasus di DAS Serang, Kabupaten Kulonprogo) Nursida Arif; Projo Danoedoro; Hartono Hartono
Jurnal Ilmu Lingkungan Vol 15, No 2 (2017): Oktober 2017
Publisher : School of Postgraduate Studies, Diponegoro Univer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1965.297 KB) | DOI: 10.14710/jil.15.2.127-134

Abstract

Erosi merupakan salah satu fenomena alam yang banyak dikaji karena melibatkan banyak faktor yaitu vegetasi, tanah, iklim, topografi dan manusia.  Kompleksitas faktor-faktor yang mempengaruhi erosi disederhanakan melalui pemodelan untuk memprediksi tingkat erosi pada suatu wilayah dengan memanfaatkan data penginderaan jauh dan sistem informasi geografis. Faktor yang digunakan dalam menyusun model hanya melibatkan tiga faktor yaitu vegetasi, tanah dan lereng. Penelitian ini dilakukan di DAS Serang karena termasuk salah satu DAS yang berada dalam kondisi kritis yang dapat memicu terjadinya degradasi lahan, erosi dan longsor. Tujuan penelitian ini adalah mengetahui distribusi spasial tingkat erosi kualitatif di DAS Serang. Pendekatan yang digunakan adalah integrasi peginderaan jauh dan sistem informasi geografis berbasis raster. Validasi model dilakukan dengan melihat faktor topografi dan indikator erosi kualitatif di lapangan yaitu armour layer, singkapan akar, pedestal, erosi alur dan gully. Hasil penelitian menunjukan model yang dihasilkan sangat efektif sebagai solusi cepat prediksi erosi. Berdasarkan hasil analisis tingkat erosi sangat berat mendominasi di wilayah kajian yaitu sebagian besar di kecamatan Kokap, Girimulyo dan sebagian Pengasih.Kata kunci: Erosi, Model, Kualitatif, DAS SerangEnglish Title: Spatial Modeling of Raster Based  Qualitative ErosionABSTRACTErosion is one of the natural phenomena that's studied by many because it involves many factors, namely vegetation, soil, climate, topography and humans. The complexity of the factors affecting erosion is simplified through modeling to predict of erosion rates in a region by utilizing remote sensing data and geographic information systems. The erosion control factor used in this research fewer parameters, namely vegetation, soil and topography only. This research was conducted in Serang watershed because it is one of the watersheds which are in critical conditions which can trigger land degradation, erosion and landslides. The purpose of this research was to know the spatial distribution of erosion susceptibility levels in Serang watershed. The approach used was the integration of remote sensing and raster-based geographic information system. Model validation was undertaken based on topograhy factor and observation of qualitative erosion indicators in the field. The indicators used were pedestals, armor layers, root exposure, or other erosion featuress such as rill and gullies. The results show that the resulting model is more effective as a quick solution to the prediction of erosion. Based on the results of the analysis, the spatial distribution of erosion rates is very dominant in the study area, mostly in Kokap, Girimulyo and some of the sub-districts.Keywords: Erosion, Modeling, Qualitative, Serang watershedCitation: Arif, N., Danoedoro, P., dan Hartono. (2017). Pemodelan Spasial Erosi Kualitatif Berbasis Raster Studi Kasus di DAS Serang, Kabupaten Kulonprogo. Jurnal Ilmu Lingkungan, 15(2),127-134, doi:10.14710/jil.15.2.127-134
PEMETAAN FAKTOR C YANG DITURUNKAN DARI BERBAGAI INDEKS VEGETASI DATA PENGINDERAAN JAUH SEBAGAI MASUKAN PEMODELAN EROSI DI DAS MERAWU (C Factor Mapping Derived from Various Vegetation Indeces of Remotely Sensed Data for Erosion Modeling at Merawu Catchment Bambang Sulistyo; Totok Gunawan; Hartono Hartono; Danoedoro Danoedoro
Jurnal Manusia dan Lingkungan Vol 18, No 1 (2011): Maret
Publisher : Pusat Studi Lingkungan Hidup Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jml.18437

Abstract

ABSTRAKPenelitian ini bertujuan untuk mengkaji berbagai indeks vegetasi yang diturunkan dari data penginderaan jauh dalam pemetaan faktor C sebagai masukan dalam pemodelan erosi USLE (Universal Soil Loss Equation). Metode yang digunakan dalam penelitian ini adalah dengan menganalisis data penginderaan jauh Landsat 7 ETM + sehingga menghasilkan berbagai indeks vegetasi yang kemudian dilakukan analisis korelasi dengan Faktor C yang diukur di lapangan pada 45 lokasi. Dari analisis ini diperoleh suatu model untuk pemetaan faktor C (C model ) dari berbagai indeks vegetasi. Peta faktor C yang diperoleh kemudian dilakukan validasi pada 48 lokasi sehingga akan diketahui keakuratan hasil pemodelan. Dalam penelitian ini dikaji 11 (sebelas) indeks vegetasi yang diturunkan dari data penginderaan jauh, yaitu ARVI, MSAVI, TVI, VIF, NDVI, TSAVI, SAVI, EVI, RVI, DVI, dan PVI. Hasil penelitian menunjukkan bahwa dari 11 indeks vegetasi yang dikaji terdapat 8 indeks vegetasi yang menghasilkan peta faktor C dengan ketelitian yang tinggi, yaitu MSAVI, TVI, VIF, NDVI, TSAVI, SAVI, EVI, dan RVI. Indeks vegetasi yang menggunakan rumus yang lebih kompleks menghasilkan koefisien korelasi yang lebih tinggi dibanding dengan indeks vegetasi yang menggunakan rumus yang sederhana. Indeks vegetasi yang mempertimbangkan latar belakang tanah (MSAVI dan TSAVI) mempunyai koefisien korelasi lebih tinggi dibanding dengan koefisien korelasi yang tidak mempertimbangkan latar belakang tanah.ABSTRACTThe research was aim at studying C factor mapping derived from various vegetation indices of remotely-sensed data as input for USLE (Universal Soil Loss Equation) erosion modeling at Merawu Catchment. Methodology applied was by analyzing remote sensing data of Landsat 7 ETM+ to obtain various vegetation indices for correlation analysis with C Factor measured directly from 45 locations on the field. The analysis resulted models for C factor mapping from various vegetation indices (Cmodel). These C factor maps were validated using 48 locations on the field to know their accuracies. These research used 11 (eleven) vegetation indices of remotely-sensed data, namely ARVI, MSAVI, TVI, VIF, NDVI, TSAVI, SAVI, EVI, RVI, DVI and PVI. The research result showed that from 11 vegetation indices there were 8 vegetation indices resulted high accuracy of C factor maps, i.e. MSAVI, TVI, VIF, NDVI, TSAVI, SAVI, EVI and RVI. Vegetation indices using more complicated formulae resulted higher correlation of coefficient compared to those vegetation indices using simpler formulae. Vegetation indices that account for soil background (MSAVI and TSAVI) resulted higher correlation of coefficient compared to those vegetation indices without considering soil background