Claim Missing Document
Check
Articles

Found 3 Documents
Search

LOGIKA FUZZY DALAM TEKNIK PERAMALAN SECARA STATISTIK Deddy Barnabas Lasfeto
Jurnal Ilmiah Flash Vol 1 No 1 (2015)
Publisher : P3M- Politeknik Negeri Kupang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1606.287 KB) | DOI: 10.32511/flash.v1i1.11

Abstract

Selama ini, metode peramalan secara konvensional yang digunakan adalah analisis regresi. Oleh karena itu, dicoba untuk dibandingkan kinerja metode konvensionil dalam hal ini analisis regresi dengan metode sistem cerdas, dalam hal ini adalah logika fuzzy. Dengan dapat dianalisisnya kinerja kedua sistem peramalan tersebut, maka user dapat memilih metode yang mana yang sebaiknya digunakan jika melakukan suatu proses peramalan. Tujuan dalam penelitian ini adalah membandingkan kinerja dari fuzzy logic dan regresi dalam analisis peramalan suatu variabel forcastum dari satu atau lebih variabel bebas (independent variable). Input yang diperlukan yang sesuai yaitu mengisi ukuran range dan memilih type fungsi keanggotaan input X1, X2, X3, …., Xn serta parameter yang diperlukan. Hal serupa juga dilakukan untuk variabel tak bebas Y. Hal yang sama input X1, X2 dan Y untuk menentukan peramalan dengan regresi berganda. Input X1, X2 dan Y secara simulasi akan ditampilkan. Untuk Melihat kinerja secara keseluruhan dalam teknik peramalan Untuk regresi berganda ini, baik secara fuzzy maupun dengan teknik konvensional maka, dihitung nilai kesalahan rata-rata yang berdsarkan kesalahan relative masing-masing y Untuk setiap input data. Dari hasil analisis ini, diperoleh bahwa pada regresi berganda, nilai kesalahan relative rata-rata pada metode Fuzzy sedikit lebih besar dibandingkan dengan metode regresi konvensional, yakni sebesar 3%. Dapat dikatakan bahwa Metode regresi konvensional lebih baik dibandingkan dengan metode fuzzy dalam tekni peramalan ini.
Modelling The Learner Model Based Ontology In Adaptive Learning Environment Saida Ulfa; Deddy Barnabas Lasfeto; Citra Kurniawan
Journal of Disruptive Learning Innovation (JODLI) Vol 1, No 1 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (184.379 KB) | DOI: 10.17977/um072v1i12019p34-45

Abstract

Currently, the online learners are increasingly demanding more personalized learning since the web technology, and the learners have individual features of characteristics such as learning goals, experiences, interests, personality traits, learning styles, learning activities, and prior knowledge. A personalized learning process requires an adaptive learning system (ALS). In order to adapt, a learner model is required. Thus, modelling the learner model in an adaptive system environment is a key point to success in recommending the learner. The ontology-based approach was used to model the adaptive learning model in this research.   Ontology is a graph structure that consists of a collection of contexts, relationships, and models which related to contexts. The ontology of the learner model enables to produce a description of learner’s properties which contains important information about domain knowledge, learning performance, interests, preference, goal, tasks, and personal traits.Keywords - Personalized Learning, Adaptive Learning System, Ontology, Learner Model
The Relationship of Digital Accounting and Digital Economics in Information Technology Transformation Donny Teguh Santoso Junias; Deddy Barnabas Lasfeto; Fransiscus Nicodemus Naiola; Elma Margaretha Malelak
Jurnal Informatika Ekonomi Bisnis Vol. 6, No. 1 (March 2024)
Publisher : SAFE-Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37034/infeb.v6i1.827

Abstract

The aim of this research is to conduct further studies related to the use of digital accounting in an effort to optimize the success of improving the digital-based economy so that it is hoped that it will actually provide real benefits for the business world without being accompanied by detrimental errors in management in the accounting field. The research method used is by conducting a questionnaire survey on several conceptual parameters in Digital Accounting that support the development of the Digital Economy in current conditions. Data analysis uses quantitative qualitative analysis to explain the results of the numerical data analysis produced. The sample used was 43 respondents taken randomly. The expected research output is to be able to make a strategic contribution to the use of digital accounting technology in supporting the development of the digital economy in the business world. The final conclusion of this research proves that digital accounting and the digital economy have a very strong relationship (Corr. Pearson=0.949141 > 0.80). Testing the correlation of digital accounting using the parameters of ease of information and data/internet access illustrates a very strong relationship with information transformation in the digital economic world.