Indiana Marethi
Universitas Sultan Ageng Tirtayasa

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Pemodelan Akreditasi SMK di Provinsi Banten dengan Menggunakan Logika Fuzzy Metode Mamdani Syamsuri Syamsuri; Indiana Marethi
Jurnal Matematika MANTIK Vol. 4 No. 1 (2018): Mathematics and Applied Mathematics
Publisher : Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.781 KB) | DOI: 10.15642/mantik.2018.4.1.42-48

Abstract

This article aims to describe an accreditation model of vocational schools in Banten province that accredited for 2009-2011 using method of Mamdani of fuzzy logic. The data used were obtained from Banten Accreditation Board for Schools/Madrasah (BAP-S/M), 275 expertise in vocational programs are accredited by the BAP-S/M Banten during 2009-2011. In the accreditation model using fuzzy logic assumes that: (1) there are strong correlation among content standards, process standards, competency standards, and assessment standards, so that we use score of process standards in modelling, (2) Standard educators and staff, as well as management standard strongly correlated, so that we choose educators, and (3) standards of infrastructure and financing have strong correlation, so that only one representing one standard, namely : standard of infrastructure. The model can be used in predicting the outcome of a vocational accreditation by just looking scores from the process standard, educators standard, and infrastructures standard. The resulting models have about 68% accuracy rate.
Understanding on Strategies of Teaching Mathematical Proof for Undergraduate Students Syamsuri Syamsuri; Indiana Marethi; Anwar Mutaqin
Jurnal Cakrawala Pendidikan CAKRAWALA PENDIDIKAN EDISI JUNI 2018, TH.XXXVII, NO.2
Publisher : LPMPP Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (520.065 KB) | DOI: 10.21831/cp.v37i2.19091

Abstract

Abstract: Many researches revealed that many students have difficulties in constructing proofs. Based on our empirical data, we develop a quadrant model to describe students’ classification of proof result. The quadrant model classifies a students’ proof construction based on the result of mathematical thinking. The aim of this article is to describe a students’ comprehension of proof based on the quadrant model in order to give appropriate suggested learning. The research is an explorative research and was conducted on 26 students majored in mathematics education in public university in Banten province, Indonesia. The main instrument in explorative research was researcher itself. The support instruments are proving-task and interview guides. These instruments were validated from two lecturers in order to guarantee the quality of instruments.Based on the results, some appropriate learning activities should be designed to support the students’ characteristics from each quadrant, i.e: a hermeneutics approach, using the two-column form method, learning using worked-example, or using structural method.Keywords:proof, proving learning, undergraduate, quadrant model Memahami Strategi Pengajaran Pembuktian Matematis di Perguruan TinggiAbstrak: Banyakpeneliti pendidikan matematika menyatakan bahwa siswa mengalami kesulitan dalam mengonstruksi bukti. Berdasarkan kajian empiris, penulis membangun suatu model kuadran untuk mendeskripsikan kategori konstruksi bukti yang dibangun siswa. Model kuadran tersebut mengklasifikasikan konstruksi bukti berdasarkan cara berpikir matematis saiwa. Adapun tujuan dari artikel ini ialah mendeskripsikan pemahaman siswa dalam mengonstruksi bukti berdasarkan model kuadran serta memberikan saran strategi pembelajarannya. Penelitian ini merupakan penelitian eksploratif yang melibatkan 26 mahasiswa Jurusan Pendidikan Matematika pada universitas negeri di Provinsi Banten. Instrumen utama dalam penelitian eksploratif adalah peneliti sendiri. Instrumen pendukungnya ialah tugas pembuktian matematis dan panduan wawancara. Kedua instrumen pendukung tersebut telah divalidasi untuk menjamin kualitas instrumen yang digunakan. Hasil penelitian ini memberikan saran terkait aktivitas pembelajaran yang seharusnya dilakukan oleh pengajar agar sesuai dengan karakteristik berpikir siswa dalam mengonstruksi bukti pada masing-masing kuadran, misalnya : pendekatan heurmenistik, menggunakan metode dua-kolom, pembelajaran worked-example ataupun menggunakan metode terstruktur.Kata Kunci: bukti, pengajaran bukti, mahasiswa, model kuadran
Fostering Germane Load Through Self-Explanation Prompting In Calculus Instruction Cecep Anwar Hadi Firdos Santosa; Sufyani Prabawanto; Indiana Marethi
Indonesian Journal on Learning and Advanced Education (IJOLAE) Vol. 1, No. 1, January 2019
Publisher : Faculty of Teacher Training and Education, Universitas Muhammadiyah Surakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/ijolae.v1i1.7421

Abstract

The purpose of this research was to investigate the effect of self-explanation prompting to students’ germane load while studying mathematics in the multivariable calculus course. This research employed a quasi-experimental method with matching-only posttest-only control group design. The subject of the research consists of 72 first-year mathematics education undergraduate students. The results indicated that there was no significant difference in students’ germane load between students who implemented worked-example with self-explanation prompting and students who implemented worked-example without self-explanation prompting. However, it was revealed that the students' germane load was categorized high in both classes. It indicates that the worked-example method could foster students' germane load. Nonetheless, these results cannot be evidence that self-explanation prompting is capable to foster students' germane load. However, there is an association between germane load and learning objectives. When students achieve the learning objectives, then its learning method is able to foster the germane load. To assess the learning objectives, the posttest was arranged. The results stated that students who implemented the worked-example method with self-explanation prompting had better test scores than students who implemented the worked-example method without self-explanation prompting. This result was sufficient to provide evidence that the use of worked-example with self-explanation prompting could foster students’ germane load students in the multivariable calculus course.
APOS analysis on cognitive process in mathematical proving activities Syamsuri Syamsuri; Indiana Marethi
International Journal on Teaching and Learning Mathematics Vol 1, No 1 (2018): June (This issue published papers with authors/co-authors from 7 universities/in
Publisher : Universitas Islam Negeri Maulana Malik Ibrahim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ijtlm.v1i1.5613

Abstract

Thinking is very necessary in learning mathematics, both at school and college level. Several studies have attempted to reveal students' thinking in learning mathematics at college. This article aims to describe the mental structure that occurs when constructing mathematical proofs in terms of APOS theory. The APOS theory has been widely used in analyzing the formation of mathematical concepts in universities. This research explores a thinking process in proof constructing. It uses a qualitative approach. The research was conducted on 26 students majored in mathematics education in public university at Banten, Indonesia. The consideration of that was because the students were able to think a formal proof in mathematics. Results show that there are two types of thinking process in mathematical proving activities, namely:  the deductive-holistic and the inductive-partial type of thinking process. Based on the results, some suitable learning activities should be designed to support the construction of these mental categories.
Kemampuan Pemahaman Konsep Matematis Siswa: Ditinjau dari Kategori Kecemasan Matematik Putri Diana; Indiana Marethi; Aan Subhan Pamungkas
SJME (Supremum Journal of Mathematics Education) Vol 4 No 1 (2020): January 2020
Publisher : Fakultas Keguruan dan Ilmu Pendidikan Universitas Singaperbangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35706/sjme.v4i1.2033

Abstract

Penelitian ini dilatar belakangi oleh rendahnya kemampuan pemahaman konsep matematis siswa, bisa disebabkan oleh beberapa faktor, baik itu faktor eksternal maupun faktor internal siswa. Faktor eksternal yang berasal dari luar diri siswa, seperti metode atau strategi pembelajaran. Sementara itu faktor internal yang berasal dari dalam diri siswa, seperti emosi dan sikap terhadap matematika. Penelitian ini bertujuan untuk mengetahui bagaimana perbedaan kemampuan pemahaman konsep matematika siswa ditinjau dari tingkatan kecemasan matematika di SMPN 3 Kota Serang kelas VII. Penelitian ini merupakan survey, dengan 3 kelas yang dijadikan sampel dalam penelitian ini. Pengambila data dilakukn dengan menggunakan angket dan tes. Berdasarkan hasil penelitian, diperoleh hasil yaitu terdapat perbedaan yang signifikan kemampuan pemahaman konsep matematika siswa ditinjau dari tingkat kecemasan matematika (tinggi, sedang, dan rendah). 
PENERAPAN MODEL PEMBELAJARAN KOOPERATIF MAKE A MATCH DENGAN PENDEKATAN SAINTIFIK UNTUK MENINGKATKAN KEMAMPUAN KOMUNIKASI MATEMATIS SISWA Iis Irmawati; Yani Setiani; Indiana Marethi
UJMES (Uninus Journal of Mathematics Education and Science) Vol 5, No 1 (2020): Januari 2020
Publisher : Universitas Islam Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (398.495 KB) | DOI: 10.30999/ujmes.v5i1.914

Abstract

Mathematical communication is the delivery of ideas or ideas that involve physical and mental activities that must be possessed bystudents in solving a problem in mathematics. For this reason, an appropriate learning model is needed, one of which is the Make AMatch cooperative learning model. The main objective of this research is to find out whether there are differences in achievement andimprovement in mathematical communication skills of students who use the Make A Match cooperative learning model with studentswho do not use the Make A Match cooperative learning model. This research was conducted using a quasi-experimental method. Thedesign used was non-equivalent control group design while the population in this study were all grade VII students of SMP Negeri 4Serang in the 2016/2017 school year. Sampling uses a purposive sampling technique and the instruments used are tests. The resultsshowed that: (1) The final achievement of mathematical communication skills of students who get the Make A Match cooperativelearning model with a scientific approach is better than students who get learning with a scientific approach. (2) Improvement of thefinal achievement of mathematical communication skills of students who get the Make A Match cooperative learning model with ascientific approach is better than students who get learning with a scientific approach.