Yusuf Arif Setiawan
Universitas Nusa Mandiri

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Manajemen Informatika dan Sistem Informasi

RANGKING INDEKS BERITA LARANGAN MUDIK PADA PORTAL MEDIA ONLINEDENGAN METODE TF-IDF DAN COSINE SIMILARITY MENGGUNAKAN MACHINE LEARNING Muhammad Syahrani; Kusnadi - Kusnadi; Bambang Joko Triwibowo; Yusuf Arif Setiawan; Fariszal Nova Arviantino; Didi Rosiyadi
Jurnal Manajemen Informatika dan Sistem Informasi Vol. 5 No. 1 (2022): MISI Januari 2022
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36595/misi.v5i1.500

Abstract

Usaha pemerintah Indonesia dalam pencegahan penyebaran virus Covid 19 dengan dikeluarkannya peraturan yang diterapkan sampai tingkat daerah. Dan tradisi tahunan masyarakat Indonesia mudik lebaran 2021 telah dilarang. Opini berita tentang pelarangan mudik lebaran baik dimedia cetak maupun media online dan dimedia sosialpun ramai diperbincangkan, tentu masyarakat yang akan mudik merasakan kebingungan dengan pemberitaan tersebut dan belum mengetahui kapan dan sampai kapan diberlakukan. Hal ini peneliti bereksperimen mengumpulkan berita-berita yang ada di portal media online. Kumpulan berita tersebut dijadikan dataset, selanjutnya dilakukan preprocessing meliputi tahapan tokenizing, filtering dan stemming. Pencarian informasi berita yang akurasi dapat menggunakan algoritma vector space model dengan menghitung TF IDF dan cosine similarity pada setiap judul berita (dokumen) dan pada paper ini peneliti dengan menggunakan machine learning. Dataset yang digunakan 5 judul berita yang masing-masing diberi label D1, D2, D3, D4, dan D5. Hasil penelitian menunjukan bahwa rangking indek berita larangan mudik yang paling tinggi terdapat pada dokumen 5(D5) dengan skor 0,612. Hasil tersebut menguatkan akan tujuan penelitian yaitu untuk mengetahui keyword yang cocok digunakan agar dapat memperoleh berita yang relevan dan sesuai keinginan dengan menghitung dan merangking hasil nilai cosine similarity.