Claim Missing Document
Check
Articles

Found 5 Documents
Search

KONTROL KOMPLEMETER YANG OPTIMAL UNTUK SISTEM LTI STABIL POSITIF Nurweni Putri; Iswan Rina
Jurnal Matematika, Statistika dan Komputasi Vol. 17 No. 3 (2021): May, 2021
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v17i3.13379

Abstract

The optimal control problem is defined as a problem in selecting a controller u(t) in a continuous linear system, so that it can provide the optimum value for a given objective function. The u(t) controller is expected to control the system so that it produces the desired output. In this research, it will be studied about how to select and construct the optimal controller u(t) in the Linear Time Invariant MIMO system positive stable, so that the given system will remain positive when given constant disturbance
MENENTUKAN KONTROL YANG OPTIMAL DARI SISTEM LINEAR TIME INVARIANT (LTI) BERKENDALA Nurweni Putri; Iswan Rina
MAp (Mathematics and Applications) Journal Vol 4, No 1 (2022)
Publisher : Universitas Islam Negeri Imam Bonjol Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/map.v4i1.4187

Abstract

Sistem kontrol optimal dikatakan berkendala jika kontrol u(t) dari sistem tersebut terbatas. Sistem berkendala ini dapat diubah menjadi sistem kontrol optimal tak berkendala dengan cara mengkontruksi sistem sedemikian sehingga kontrol u*(t) yang optimal  menjadi tidak terbatas. Pada artikel ini akan dibahas mengenai bagaimana menetukan kontrol yang optimal dari sistem Linear Time Invariant (LTI) berkendala dimana u*(t) harus memenuhi sistem dan meminimukan fungsi tujuan yang diberikan dengan hasil bentuk kontrol dalam keadaan yang optimal u*(t)=-SGN{q*(t)} dimana q*(t) = BT λ*(t).
KONSTRUKSI GELOMBANG KEJUT DAN GELOMBANG MENJARANG PADA ARUS KENDARAAN DI LALU LINTAS Maya Sari Syahrul; Nurweni Putri
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 4 No. 2 (2023): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v4i2.387

Abstract

In nonlinear conservation laws, there is a possibility of intersecting characteristic lines or even regions that are not traversed by characteristic lines. In regions where there are two or more characteristic lines, a gradien catastrophic phenomenon can occur, resulting in the emergence of a breaking time, thus a weak solution of the nonlinear conservation law is considered. Such a weak solution is capable of producing shock wave solutions at the breaking time. Additionally, there are rarefaction wave solutions for regions that do not have characteristics. The construction of shock wave and rarefaction wave solutions can be observed in a case study in traffic flow, specifically before and after a traffic light turns red. Shock waves are observed in the flow of vehicles before the red light, while rarefaction waves occur when the red light changes to green
Integer Linear Programming In Production Profit Optimization Problems Using Branch And Bound Methods & Gomory Cutting Plane Nurweni putri; Maya Sari Syahrul; Rosi Ramayanti
Jurnal Matematika, Statistika dan Komputasi Vol. 20 No. 3 (2024): May 2024
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v20i3.32888

Abstract

Integer Linear Programming is a mathematical model that allows the results of solving cases in linear programming in the form of integers. Methods to solve Integer Programming problems include the Branch and Bound Method and the Gomory Cutting Plane Method. Both of these methods have certain rules for adding new constraint functions until an optimal solution to an integer is obtained. The purpose of this study is to optimize the profits of the production of UMKM Capal Classic Shoes Kab. Agam  by using the Branch and Bound method and the Gomory Cutting Plane method and analyzing the comparison of optimal results resulting from the two methods. The data used in the study are data on raw materials for making classic sandals and profit data. The results obtained by these two methods produce the same maximum profit, namely RP. 664,000 with each producing 15 pairs of men's sandals and 13 pairs of women's sandals. But in its completion, the Branch and Bound method requires many iterations and a longer time compared to the Gumory Cutting plane method.
KONTRUKSI PT-Symmetry MULTI DIMER PADA DOMAIN TAK HINGGA Maya Sari Syahrul; Iswan Rina; Nurweni Putri
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 4 No. 3 (2023): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v4i3.528

Abstract

Parity-Time Symmetry, or abbreviated as -Symmetry, can be explained as the propagation of an optical beam in two bound waveguides, where one waveguide experiences strengthening and the other waveguide experiences weakening, with each intensity having the same value. Then, the two waveguides are known as dimers, so the phenomenon is called dimer -Symmetry. Furthermore, the -Symmetry dimer is expanded into a system consisting of a collection of -Symmetry Dimers, where each dimer is bound by a binding constant. The result of this expansion is called the multi dimer -Symmetry system. Research on the propagation of optical rays in waveguides plays an important role in the development of optical-based communication technology in the future