Claim Missing Document
Check
Articles

Found 3 Documents
Search

Rancang bangun sistem robot AGV untuk penyortiran paket ekspedisi dengan fitur anti collision Mohamad Nasyir Tamara; Eko Budi Utomo; Ni’am Tamami; Endra Pitowarno; Novian Fajar Satria; Didik Setyo Purnomo; Cahyo Sugianto; Wildan Hilmi
JURNAL ELTEK Vol 20 No 2 (2022): ELTEK Vol 20 No 2
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (656.787 KB) | DOI: 10.33795/eltek.v20i2.359

Abstract

ABSTRAK Robot Automated Guided Vehicle (AGV) secara luas diterapkan di berbagai tempat seperti pabrikasi dan manufaktur yang telah menggunakan sistem otomatis, khususnya pada area pergudangan. Ferlib AGV merupakan robot pembawa barang yang didesain khusus untuk membawa dan memindah barang. Robot Ferlib AGV diciptakan untuk memenuhi kebutuhan para pekerja dalam sistem tata kelola pergudangan di industri terutama pekerjaan yang bergerak dalam bidang ekspedisi pengiriman barang. Pada saat beberapa robot berjalan di ruang atau daerah kerja yang sama, terdapat masalah yang mungkin terjadi dalam manajemen lalu lintas salah satunya adalah tabrakan. Penelitian ini bertujuan untuk membuat sebuah sistem yang dapat membuat robot menuju ke posisi yang diinginkan dan sebuah sistem yang dapat menghindari terjadinya tabrakan untuk diimplementasikan pada robot Ferlib AGV sebagai robot pembawa barang. Ada dua jenis konflik yang dapat menyebabkan terjadinya tabrakan yaitu Node Conflict dan Opposite Conflict. Robot mendeteksi konflik menggunakan sensor Position Sensitive Device (PSD) jenis inframerah. Untuk menyelesaikan konflik antar robot dimulai dari perencanaan jalur yang sesuai, dan dasar efektivitas tugas penjadwalan pergerakan robot. Hasil dari sistem ini telah mampu membuat robot Ferlib AGV sebagai robot pembawa barang yang dapat membawa barang menuju posisi koordinat berdasarkan posisi yang diberikan, serta dapat mendeteksi konflik dan melakukan penghindaran berdasarkan jenis konflik yang terjadi. ABSTRACT Automated Guided Vehicle System (AGVs) robots are widely applied in various places such as manufacturing and manufacturing that have used automated systems, especially in warehousing areas. Ferlib AGV is a freight robot specifically designed to carry and move goods. The Ferlib AGV robot was created to meet the needs of workers in the warehousing governance system in the industry, especially jobs engaged in the transportation and transfer of goods. When several robots run in the same work space or area, there are problems that may occur in traffic management, one of which is a collision. This study aims to create a system that can make the robot go to the desired position and a system that can avoid collisions to be implemented on the Ferlib AGV robot as a freight robot. There are two types of conflicts that can cause collisions, namely Node Conflict and Opposite Conflict. Robots detect conflicts using an infrared sensor type Position Sensitive Device (PSD). To resolve conflicts between robots starts from the appropriate path planning, and the basic effectiveness of the task of scheduling robot movements. The results of this system have been able to make Ferlib AGV robots as goods-carrying robots that can carry goods to coordinate positions based on the given position, and can detect conflicts and avoidance based on the type of conflict that occurs.
Robot Keseimbangan Beroda Dua dengan Sistem Kontrol Keseimbangan dan Posisi Menggunakan Metode PID Bertingkat Niam Tamami; Ibrahim Muhammad Diin; Bambang Sumantri; Endra Pitowarno
Jurnal Rekayasa Elektrika Vol 14, No 3 (2018)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1181.794 KB) | DOI: 10.17529/jre.v14i3.11939

Abstract

The two-wheeled balancing robot is a robot that will maintain its balance to stay upright by using two wheels. This robot cannot be stable when the condition is upright and requires a control mechanism when moving. There are at least two control mechanisms in this robot, first is balance control, and the second is position control. The cascade PID method is proposed as a control mechanism, which consists of balance control as primary control and position control (distance and direction) as a secondary control. This method has been applied to robots. Based on the first, second, and third experiment, the best configuration of cascade PID control is PID for the balance control block, PD for distance control, and PD for direction control. By using cascade PID control, the two-wheeled balancing robot has been able to balance itself with oscillations ranging from ± 15.00 degrees when moving and it can move towards the ordered position with the error position from the target. Fourth experiment position error is (0.17, -0.26) and (0.45, -0.43) for the fifth experiment.
Robot Keseimbangan Beroda Dua dengan Sistem Kontrol Keseimbangan dan Posisi Menggunakan Metode PID Bertingkat Niam Tamami; Ibrahim Muhammad Diin; Bambang Sumantri; Endra Pitowarno
Jurnal Rekayasa Elektrika Vol 14, No 3 (2018)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v14i3.11939

Abstract

The two-wheeled balancing robot is a robot that will maintain its balance to stay upright by using two wheels. This robot cannot be stable when the condition is upright and requires a control mechanism when moving. There are at least two control mechanisms in this robot, first is balance control, and the second is position control. The cascade PID method is proposed as a control mechanism, which consists of balance control as primary control and position control (distance and direction) as a secondary control. This method has been applied to robots. Based on the first, second, and third experiment, the best configuration of cascade PID control is PID for the balance control block, PD for distance control, and PD for direction control. By using cascade PID control, the two-wheeled balancing robot has been able to balance itself with oscillations ranging from ± 15.00 degrees when moving and it can move towards the ordered position with the error position from the target. Fourth experiment position error is (0.17, -0.26) and (0.45, -0.43) for the fifth experiment.