Claim Missing Document
Check
Articles

Found 7 Documents
Search

Surface 3D Scanner Using Time of Flight Ranging Sensor with Cylindrical Coordinate System Achmad Purnomo Wijaya; Niam Tamami; Hary Oktavianto
Jurnal Teknik Mesin dan Mekatronika (Journal of Mechanical Engineering and Mechatronics) Vol 7, No 1 (2022): JOURNAL OF MECHANICAL ENGINEERING AND MECHATRONICS
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33021/jmem.v7i1.1477

Abstract

3D scanner that uses image sensors requires the role of a computer that includes a data generator, data acquisition, and visual display. In a simply system, it can be designed the sensory system uses non-imagery sensor so the role of the data generator can be handled by the microcontroller. This research aims to make a simple 3D scanner using inexpensive non-imagery Time of Flight VL53L0X sensor and data processing can be processed directly by the microcontroller. The results of sensor distance measurements are processed on the microcontroller and desktop application. The distance and angle values are converted into Cartesian coordinate using cylindrical coordinate system. The scan results of the cubes, prisms and cylinder are similar with the reference object, but the results of the pyramid test at the top cannot be scanned properly due to the narrow surface. The laser beam from the emitter cannot bounce back to the collector properly makes distance reading is inaccurate and causes error in the point cloud conversion. The comparison error between the side of the scan results and the reference object is between 2.54-39.8%. The surface of objects with bright color has a smaller error than those with dark color. The comparison error of the height of the scan results with the reference object is between 5-32%. The angle of the emitter exclusion cone and the collector exclusion cone sensor affects the error at the side and height of the scan results.
Local positioning system for autonomous vertical take-off and landing using ultra-wide band measurement ranging system Niam Tamami; Bambang Sumantri; Prima Kristalina
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 12, No 1 (2021)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2021.v12.18-27

Abstract

An autonomous vertical take-off and landing (VTOL) must be supported with an accurate positioning system, especially for autonomous take-off, landing, and other tasks in small area. This paper presents a novel method of small local outdoor positioning system for localizing the area of dropping and landing of autonomous VTOL by utilizing the low-cost precision ultra-wide band (UWB) ranging system. We compared symmetrical single sided-two way ranging (SSS-TWR), symmetrical double sided-two way ranging (SDS-TWR), and asymmetrical double sided-two way ranging (ADS-TWR) methods to get precision ranging measurement on UWB radio module. ADS-TWR was superior to others by resulting in minimum distance error. The ADS-TWR average error was 1.38 % (35.88 cm), SDS-TWR average error was 1.83 % (47.58 cm), and SSS-TWR average error was 2.73 % (70.98 cm). Furthermore, the trilateration method was utilized to obtain the local position of the autonomous VTOL. The trilateration method successfully implemented autonomous VTOL quadcopter positioning in a small local outdoor area (20 m x 30 m). Autonomous VTOL has been able to drop seven payloads in seven areas (2 m x 2 m) and landed in the home position (3 m x 3 m) successfully.
An Implementation of Grouping Nodes in Wireless Sensor Network Based on Distance by Using k-Means Clustering Rizqi Fauzil Azhar; Ahmad Zainudin; Prima Kristalina; Bagas Mardiasyah Prakoso; Niam Tamami
CommIT (Communication and Information Technology) Journal Vol. 12 No. 2 (2018): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v12i2.4714

Abstract

Wireless Sensor Network (WSN) is a network consisting of several sensor nodes that communicate with each other and work together to collect data from the surrounding environment. One of the WSN problems is the limited available power. Therefore, nodes on WSN need to communicate by using a cluster-based routing protocol. To solve this, the researchers propose a node grouping based on distance by using k-means clustering with a hardware implementation. Cluster formation and member node selection are performed based on the nearest device of the sensor node to the cluster head. The k-means algorithm utilizes Euclidean distance as the main grouping nodes parameter obtained from the conversion of the Received Signal Strength Indication (RSSI) into the distance estimation between nodes. RSSI as the parameter of nearest neighbor nodes uses lognormal shadowing channel modeling method that can be used to get the path loss exponent in an observation area. The estimated distance in the observation area has 27.9% error. The average time required for grouping is 58.54 s. Meanwhile, the average time used to retrieve coordinate data on each cluster to the database is 45.54 s. In the system, the most time-consuming process is the PAN ID change process with an average time of 14.20 s for each change of PAN ID. The grouping nodes in WSN using k-means clustering algorithm can improve the power efficiency by 6.5%.
Rancang bangun robot kartesian tiga axis untuk penyiraman tanaman yang akurat dan efisien Niam Tamami; Hendhi Hermawan; Nofria Hanafi; Madyono Madyono
JURNAL ELTEK Vol 20 No 2 (2022): ELTEK Vol 20 No 2
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (637.101 KB) | DOI: 10.33795/eltek.v20i2.351

Abstract

Untuk menunjang lahan pertanian yang subur, diperlukan proses penyiraman agar kadar air dalam tanah tetap terjaga. Kegiatan penyiraman yang dilakukan secara manual membutuhkan banyak energi. Selain itu kadar air yang diberikan dengan penyiraman manual tidak dapat terukur secara akurat. Dalam makalah ini, kami mengusulkan penyiraman otomatis dengan robot kartesian tiga aksis untuk lahan dengan ukuran 3 meter x 1.5 meter dengan 171 titik tanam. Kontrol penyiraman berbasis fuzzy agar kadar air yang diberikan bisa akurat. Sebelum penyiraman, rata-rata kelembapan tanah pada lahan tersebut adalah 45.28% dengan nilai minimal 40%, nilai maksimal 50%. Target kelembapan tanah untuk setiap titik adalah 60%. Robot dapat menyiram seluruh titik tanam tanpa campur tangan manusia. Nilai kadar air rata-rata penyiraman adalah 62.10%, dengan nilai minimal 60%, nilai maksimal 65%. To support fertile agricultural land, a watering process is needed so that the water content in the soil is maintained. Watering activities carried out manually require a lot of energy. In addition, the water content given by manual watering cannot be measured accurately. In this paper, we propose automatic watering with a three-axis Cartesian robot for land with a size of 3 meters x 1.5 meters with 171 planting points. Fuzzy based watering control so that the water content given can be accurate. Before watering, the average soil moisture on the land was 45.28% with a minimum value of 40%, a maximum value of 50%. The target soil moisture for each point is 60%. The robot can water the entire planting point without human intervention. The average water content value of watering is 62.10%, with a minimum value of 60%, a maximum value of 65%. In addition, also compared with the application error with the fuzzy method with the on-off method, the fuzzy method is able to produce more accurate watering with an average error rate of 2.10%, while the on-off method has an average error of 5.32% against the soil moisture target. The fuzzy method is also more time efficient in watering, which is 7 seconds to 8 seconds, while the on-off method requires a watering time of 10 seconds to 15 seconds
Desain FW UAV Model Pylon dan Fighter Untuk Kecepatan Manuver Lintasan Angka 8 Nofria Hanafi; Niam Tamami; Agung Setya Herwanda; Abidul Qohar; Mohamad Johan Arifin
Journal of Electrical Engineering and Computer (JEECOM) Vol 5, No 1 (2023)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v5i1.5879

Abstract

Salah satu kemampuan dasar wahana terbang type fixedwing adalah dapat lepas landas pada area yang terbatas, terbang cepat mencapai lokasi yang diinginkan secara aman, akurat pada lintasan yang diinginkan dan dapat kembali ke base untuk mendarat dengan selamat. Misi khusus seperti pertolongan dan pertahanan membutuhkan wahana terbang yang cepat dan mampu mendarat dengan akurat, tetapi performa tersebut juga membutuhkan konsumsi energi yang besar. Untuk mendapatkan performa yang cepat, namun dengan energi yang efisien, wahana terbang didesain dengan model pylon pusher menggunakan airfoil ag03-il dan penambahan stabilizer cruciform untuk meningkatkan kecepatan pesawat dan menjaga pesawat agar stabil. Untuk tahap awal penelitian ini dibagi menjadi tiga proses yaitu menentukan konfigurasi pesawat, membuat gambar tiga dimensi, dan menganalisis desain tiga dimensi menggunakan software ansys. Hasil ketiga proses tersebut didapatkan desain baru dengan konfigurasi penempatan sayap (hight wing) dengan ekor menggunakan stabilizer cruciform. Data teknis hasil perancangan adalah sebagai berikut: berat take-off 23 N, luas sayap 0,378  dan panjang pesawat 0,72 m pada saat kecepatan jelajah koefisien gaya angkat (Cl) 0,35 dan koefisien gaya angkat maksimum (CLmax) pesawat sebesar 1,12 ketika sudut serang .selain itu diperlukan campur tangan pilot melalui remote control untuk menghasilkan kecepatan yang maksimal. Desain baru  pesawat model fighter untuk divisi Racing Plane mampu menambah kecepatan hingga 30% dari yang telah dibuat model pylon. 
Robot Keseimbangan Beroda Dua dengan Sistem Kontrol Keseimbangan dan Posisi Menggunakan Metode PID Bertingkat Niam Tamami; Ibrahim Muhammad Diin; Bambang Sumantri; Endra Pitowarno
Jurnal Rekayasa Elektrika Vol 14, No 3 (2018)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1181.794 KB) | DOI: 10.17529/jre.v14i3.11939

Abstract

The two-wheeled balancing robot is a robot that will maintain its balance to stay upright by using two wheels. This robot cannot be stable when the condition is upright and requires a control mechanism when moving. There are at least two control mechanisms in this robot, first is balance control, and the second is position control. The cascade PID method is proposed as a control mechanism, which consists of balance control as primary control and position control (distance and direction) as a secondary control. This method has been applied to robots. Based on the first, second, and third experiment, the best configuration of cascade PID control is PID for the balance control block, PD for distance control, and PD for direction control. By using cascade PID control, the two-wheeled balancing robot has been able to balance itself with oscillations ranging from ± 15.00 degrees when moving and it can move towards the ordered position with the error position from the target. Fourth experiment position error is (0.17, -0.26) and (0.45, -0.43) for the fifth experiment.
Robot Keseimbangan Beroda Dua dengan Sistem Kontrol Keseimbangan dan Posisi Menggunakan Metode PID Bertingkat Niam Tamami; Ibrahim Muhammad Diin; Bambang Sumantri; Endra Pitowarno
Jurnal Rekayasa Elektrika Vol 14, No 3 (2018)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v14i3.11939

Abstract

The two-wheeled balancing robot is a robot that will maintain its balance to stay upright by using two wheels. This robot cannot be stable when the condition is upright and requires a control mechanism when moving. There are at least two control mechanisms in this robot, first is balance control, and the second is position control. The cascade PID method is proposed as a control mechanism, which consists of balance control as primary control and position control (distance and direction) as a secondary control. This method has been applied to robots. Based on the first, second, and third experiment, the best configuration of cascade PID control is PID for the balance control block, PD for distance control, and PD for direction control. By using cascade PID control, the two-wheeled balancing robot has been able to balance itself with oscillations ranging from ± 15.00 degrees when moving and it can move towards the ordered position with the error position from the target. Fourth experiment position error is (0.17, -0.26) and (0.45, -0.43) for the fifth experiment.