Ika Cahyani
Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Autonomous Mobile Robot based on BehaviourBased Robotic using V-REP Simulator–Pioneer P3-DX Robot Esa Apriaskar; Fahmizal Fahmizal; Ika Cahyani; Afrizal Mayub
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1501.698 KB) | DOI: 10.17529/jre.v16i1.15081

Abstract

This article describes the design and implementation of behavior-based robotic (BBR) algorithm on a wheeled mobile robot (WMR) Pioneer P3-DX in a maze exploration mission using V-REP simulator. This robot must trace and search for targets placed randomly on a labyrinth. After successfully meeting the objective, robot runs back to home position using the nearest path. Robot navigation system applies BBR algorithm to reach the target using behavior modules which work simultaneously to obtain the desired robot’s trajectory. The most fundamental behavior which is highly affordable to build on the robot system is a wall-following behavior. To make the robot could follow the wall in a safe, smooth and responsive condition, proportional-integral-derivative (PID) controller is applied. PID controller runs by utilizing the reading of sixteen proximity sensors carried on Pioneer P3-DX robot toward the expected wall distance while the robot is exploring the labyrinth. To ensure the designed system works properly, several tests were conducted, including BBR test and PID controller test. BBR test shows that the system can choose the shortest track when returning to home position. The PID controller test produces robot movement with maximum deviation and settling time for about 0.013 m and 30 seconds, respectively.
Autonomous Mobile Robot based on BehaviourBased Robotic using V-REP Simulator–Pioneer P3-DX Robot Esa Apriaskar; Fahmizal Fahmizal; Ika Cahyani; Afrizal Mayub
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i1.15081

Abstract

This article describes the design and implementation of behavior-based robotic (BBR) algorithm on a wheeled mobile robot (WMR) Pioneer P3-DX in a maze exploration mission using V-REP simulator. This robot must trace and search for targets placed randomly on a labyrinth. After successfully meeting the objective, robot runs back to home position using the nearest path. Robot navigation system applies BBR algorithm to reach the target using behavior modules which work simultaneously to obtain the desired robot’s trajectory. The most fundamental behavior which is highly affordable to build on the robot system is a wall-following behavior. To make the robot could follow the wall in a safe, smooth and responsive condition, proportional-integral-derivative (PID) controller is applied. PID controller runs by utilizing the reading of sixteen proximity sensors carried on Pioneer P3-DX robot toward the expected wall distance while the robot is exploring the labyrinth. To ensure the designed system works properly, several tests were conducted, including BBR test and PID controller test. BBR test shows that the system can choose the shortest track when returning to home position. The PID controller test produces robot movement with maximum deviation and settling time for about 0.013 m and 30 seconds, respectively.