Claim Missing Document
Check
Articles

Found 13 Documents
Search

Desain dan Implementasi Antena Quadrifilar Helix untuk Komunikasi Antarpulau pada Pita UHF Heru Wijanarko; M. Hanif; Siti Aisyah; Kamarudin Kamarudin
Jurnal Rekayasa Elektrika Vol 16, No 2 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i2.15486

Abstract

Riau Islands, which consists of thousands of islands and is located in the border area of Indonesia, has its own challenges. Based on this strategic geographical location, there are threats and opportunities to develop inter-island information systems. Wireless long-range communication is considered the most suitable for these conditions. Antennas are an important part of wireless communication. Research and fabrication of the Helix Quadrifilar antenna by utilizing the advantages and consideration of simple, lightweight and inexpensive materials, as the receiver antenna in inter-island communication systems. In this research, the design was carried out with the assist of the Antenna Magus software, measurements were using a Vector Network Analyzer instrument, and testing accomplished under the LOS conditions. The results are fabricated antenna optimum frequency shift of 433 MHz to 452.5 MHz, within 5.88% error percentage. The antenna fabrication, which is measured at a frequency of 433 MHz, obtained return loss -13.06 dB and VSWR 1.5, that meets the criteria of 1 ≤ VSWR ≤ 2. Quadrifilar Helix Antenna fabricated results can receive data from GPS sensors, temperature, humidity, air pressure, wind speed and wind direction of up to 9 kilometers. So that this antenna is suitable to be used as an antenna for inter-island UHF communication. 
Desain Sistem Pendeteksi untuk Citra Base Sub-assembly dengan Algoritma Backpropagation Kasdianto Kasdianto; Siti Aisyah
Jurnal Rekayasa Elektrika Vol 13, No 1 (2017)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v13i1.4368

Abstract

Object identification technique using machine vision has been implemented in industrial of electronic manufacturers for years. This technique is commonly used for reject detection (for disqualified product based on existing standard) or defect detection. This research aims to build a reject detector of sub-assembly condition which is differed by two conditions that are missing screw and wrong position screw using neural network backpropagation. The image taken using camera will be converted into grayscale before it is processed in backpropagation methods to generate a weight value. The experiment result shows that the network architecture with two layers has the most excellent accuracy level. Using learning rate of 0.5, target error 0.015%, and the number of node 1 of 100 and node 2 of 50, the successive rate for sub-assembly detection in right condition reached 99.02% while no error occurs in detecting the wrong condition of Sub-assembly (missing screw and wrong position screw).
Sistem Presensi Karyawan Berbasis Pengenalan Wajah Dengan Metode Support Vector Machine David setiyadi; Fauzun Atabiq; Siti Aisyah
Journal of Applied Electrical Engineering Vol. 5 No. 2 (2021): JAEE, December 2021
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v5i2.3147

Abstract

Sistem presensi saat ini yang ada pada instansi ataupun perusahaan masih banyak yang menggunakan sistem manual. Disisi lain, perusahaan-perusahaan tersebut juga telah memiliki aplikasi pengelolaan SDM online. Oleh karena itu, untuk efektifitas dan pengembangan sistem, perlu dilakukan pengembangan sistem presensi manual tersebut menjadi sebuah sistem yang dapat diintegrasikan dengan sistem pengelolaan SDM. Untuk itu, penelitian ini mengusulkan pengembangan sistem presensi berbasiskan pengenalan wajah yang diintegrasikan dengan aplikasi pengelolaan SDM. Sistem yang dibangun merupakan sistem deteksi dan pengenalan menggunakan Support Vector Machine yang di kombinasikan dengan metode Histogram of oriented gradient. Hasil pengujian sistem presensi menunjukkan hasil recall sebesar 77,78%, nilai spesifitas 32,22%, akurasi sistem 72,78%, dan kepresisian sistem mencapai 70,71%.