Eric Budiman Gosno
Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi KD-Tree K-Means Clustering untuk Klasterisasi Dokumen Eric Budiman Gosno; Isye Arieshanti; Rully Soelaiman
Jurnal Teknik ITS Vol 2, No 2 (2013)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (322.524 KB) | DOI: 10.12962/j23373539.v2i2.3872

Abstract

Klasterisasi dokumen adalah suatu proses pengelompokan dokumen secara otomatis dan unsupervised. Klasterisasi dokumen merupakan permasalahan yang sering ditemui dalam berbagai bidang seperti text mining dan sistem temu kembali informasi. Metode klasterisasi dokumen yang memiliki akurasi dan efisiensi waktu yang tinggi sangat diperlukan untuk meningkatkan hasil pada mesin pencari web,  dan untuk proses filtering. Salah satu metode klasterisasi yang telah dikenal dan diaplikasikan dalam klasterisasi dokumen adalah K-Means Clustering. Tetapi K-Means Clustering sensitif terhadap pemilihan posisi awal dari titik tengah klaster sehingga pemilihan posisi awal dari titik tengah klaster yang buruk akan mengakibatkan K-Means Clustering terjebak dalam local optimum. KD-Tree K-Means Clustering merupakan perbaikan dari K-Means Clustering. KD-Tree K-Means Clustering menggunakan struktur data K-Dimensional Tree dan nilai kerapatan pada proses inisialisasi titik tengah klaster. Pada makalah ini diimplementasikan algoritma KD-Tree K-Means Clustering untuk permasalahan klasterisasi dokumen. Performa klasterisasi dokumen yang dihasilkan oleh metode KD-Tree K-Means Clustering pada data set 20 newsgroup memiliki nilai distorsi 3×105 lebih rendah dibandingkan dengan nilai rerata distorsi K-Means Clustering dan nilai NIG 0,09 lebih baik dibandingkan dengan nilai NIG K-Means Clustering.