Su-Cheng Haw
Faculty of Information Technology, Multimedia University, Malaysia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

An Automated Face Detection and Recognition for Class Attendance Horn Boe, Chang; Ng, Kok-Why; Haw, Su-Cheng; Naveen, Palanichamy; Abdulwahab Anaam, Elham
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2967

Abstract

Class attendance is a crucial indicator of students' seriousness towards learning. Many institutions continue to use manual methods, which are usually error-prone and unproductive. By leveraging computer vision algorithms, the system accurately captures and verifies the identity of students attending class. This paper aims to investigate and create an automated facial recognition system for classroom attendance to increase the precision and effectiveness of the attendance tracking system. To achieve this, we propose a system using computer vision technologies, namely Histogram of Oriented Gradients (HOG) with Support Vector Machine (SVM) for face detection and deep Convolutional Neural Networks (CNN) for face identification. The facial recognition system simplifies attendance recording, requiring participants to only gaze into the camera for the system to record their presence automatically. The system is rigorously tested and evaluated, and its accuracy is compared to our institution's current QR code attendance method. The study results reveal that the recommended approach is more accurate and competent than the existing procedures. The system allows for precise attendance records with real-time face detection and recognition capabilities. This technology ensures accurate and reliable attendance data, empowering organizations to make informed decisions, effectively manage resources, and provide a seamless experience for all students. In addition, a similar attendance system can be deployed for any event in an organization, thereby enhancing overall operational efficiency.
Adaptive Deep Convolution Neural Network for Early Diagnosis of Autism through Combining Personal Characteristic with Eye Tracking Path Imaging Kesavan, Revathi; Palanichamy, Naveen; Haw, Su-Cheng; Ng, Kok-Why
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.3046

Abstract

Autism is a large set of illnesses related to brain development, also referred to as autism spectrum disorder (ASD). According to WHO reports, 1 in 100 children is expected to have ASD. Numerous behavioral domains are affected, including linguistic, interpersonal skills, stereotypical and repetitive behaviors which represent an extreme instance of a neurodevelopmental abnormality. Identifying ASD can be difficult and exhausting because its symptoms are remarkably identical to those of many other disorders of the mind. Medical professionals can improve diagnosis efficiency by adapting deep learning practices. In clinics for autism spectrum disorders, eye-tracking scan pathways (ETSP) have become a more common instrument. This approach uses quantitative eye movement analysis to study attentional processes, and it exhibits promising results in the development of indicators that can be used in clinical studies for autism.   ASD can be identified by comparing the abnormal attention span patterns of children’s having the disorder to the children’s who are typically developing. The recommended model makes use of two publicly viable datasets, namely ABIDE and ETSP imaging. The proposed deep convolutional network consists of four hidden convolution layers and uses 5-fold cross-validation strategy. The performance of the proposed model is validated against multilayer perceptron (MLP) and conventional machine learning classifiers like decision tree (DT), k-nearest neighbor (KNN) and Random Forest (RF) using metrics like sensitivity, specificity and area under curve (AUC). The findings demonstrated that without the need for human assistance, the suggested model is capable of correctly identifying children with ASD.
Context-Aware Job Recommender System Azri, Muhammad Haziq Fikri Bin; Haw, Su-Cheng; Ng, Kok-Why; Saad, Mohamad Firdaus Mat
JOIV : International Journal on Informatics Visualization Vol 9, No 2 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.2.3021

Abstract

Context-aware recommendation systems have emerged as essential to interactive web content and online job search. Primarily, since so many job offers are published on different online platforms, it can make the users take some time to find good opportunities that match exactly what they are looking for, as well as countless qualified candidates and other characteristics within that context, such as temporality. This comes as no surprise, as many practitioners and researchers have resorted to machine learning to create context-aware job recommendation systems that cater not only to job seekers. In this comparative paper, we have analyzed various machine-learning models for job recommendation systems. Four fundamental pillars are considered: accuracy, scalability, interpretability, and computational efficiency. This paper also studies the extent to which these models are contextual (e.g., how well they can model factors due to user preferences, job requirements, location, industry evolution, and temporality.) and can be used as a recommendation system. This study uses real-world employment data from actual employment statistics (through fixed-period analysis), professional networking platforms, and online job market platforms. The study does so purposefully to be comprehensive because it believes the lessons from remote work are generalizable. Still, the data is from a wide variety of job sectors, job positions, and locations. The group created a test environment for constructing and testing machine learning algorithms. Collaborative filtering, content-based, matrix factorization, deep learning, and many other hybrid approaches have obtained better results. This study was performed on Python with sci-kit-learn, pandas, and NumPy. The proposed system is a context-aware job recommender system that employs many machine learning algorithms to personalize job recommendations concerning user preferences and contextual information such as job location, industry status, and temporal dynamics. The findings underscore the importance of choosing machine learning models that are well-suited for job recommendation systems on a case-by-case basis. This comparative study intends to add to the art by providing algorithmic proof and practical advice to properly leverage machine learning models proposed in a naturalistic, messy setting of context-aware job recommendation systems. 
Hybrid-Based Recommender System Based on Electronic Product Reviews Muhammad Syafiq Chelvam, Nor Liyana Natasha; Haw, Su-Cheng; Krisnawati, Lucia D.; Mahastama, Aditya
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.3561

Abstract

The era of abundant information and the continuous introduction of new products and services has made it increasingly challenging for users to navigate numerous options. Recommender systems have emerged as essential tools to help users find personalized and relevant information quickly. This paper proposes a hybrid recommender system that effectively processes online customer reviews using word embedding and clustering techniques. The system generates product-feature words, detects sentiment words and their intensity, analyzes word correlations, and extracts variables from the reviews for the product. Word embedding models, such as Word2Vec, are employed to capture the semantic content of product reviews and descriptions. The attributes extracted from the text data and word embeddings are combined to create a hybrid representation of products. Based on this hybrid representation, the system calculates the similarity among products using cosine similarity and other measures. Finally, it returns a ranked list of recommended best products based on how similar they are to either an inputted product or user preferences. We have implemented the system and experimental evaluations have been carried out on the “Datafiniti Electronics Product Data" dataset. We aim to provide personalized recommendations to users based on online reviews, ultimately enhancing the user experience and addressing the challenge of information overload in the digital age. The developed prototype will provide personalized recommendations to users, ultimately enhancing the user experience and addressing the challenge of information overload in the digital age.
Predictive Analytics for Employability in Malaysian TVET with a Hybrid of Regression and Clustering Methods Mahdin, Hairulnizam; Nurwarsito, Heru; Baharum, Zirawani; Kamri, Khairol Anuar; Hassan, Azman; Haw, Su-Cheng; Arshad, Mohammad Syafwan
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.4516

Abstract

Graduate employability remains a high concern for Technical and Vocational Education and Training (TVET) institutions, particularly within Malaysia’s Technical University Network (MTUN), where producing industry-ready graduates is a central goal. While machine learning has transformed fields like healthcare and finance, its application in vocational education remains underexplored—particularly for employability prediction. This study addresses this gap by hybridizing decision trees and clustering to uncover non-linear patterns in student survey data. Guided by Human Capital Theory and SERVQUAL, which inform variable selection (e.g., technical skills as productivity investments), this study integrates multiple linear regression, decision tree regression, and K-Means clustering to identify significant predictors and uncover latent student groupings. Using a publicly available dataset of Likert-scale responses from MTUN students, technical skills and supervisory support consistently emerged as the most impactful employability predictors. Communication showed moderate influence, while training delivery and problem-solving exhibited variable effects depending on the modelling approach. Unlike regression, decision trees revealed non-linear interaction thresholds. For example, students with SVR < 3.5 and TS < 4.0 had 40% lower employability scores, suggesting targeted mentoring could yield disproportionate improvements. Clustering revealed three distinct student profiles, which could support data-driven interventions. This hybrid framework demonstrates the potential for integrating machine learning into institutional analytics for proactive support of employability.