Claim Missing Document
Check
Articles

Found 5 Documents
Search

High-Resolution Downscaling with Interpretable Relevant Vector Machine: Rainfall Prediction for Case Study in Selangor Abdul Rashid, Raghdah Rasyidah; Milleana Shaharudin, Shazlyn; Filza Sulaiman, Nurul Ainina; Zainuddin, Nurul Hila; Mahdin, Hairulnizam; Mohd Najib, Summayah Aimi; Hidayat, Rahmat
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2700

Abstract

Due to the discrepancy in resolution between existing global climate model output and the resolution required by decision-makers, there is a persistent need for climate downscaling. We conducted a study to determine the effectiveness of Relevant Vector Machine (RVM), one of the machine learning approaches, in outperforming existing statistical methods in downscaling historical rainfall data in the complex terrain of Selangor, Malaysia. While machine learning eliminates the requirement for manual feature selection when extracting significant information from predictor fields, considering multiple pivotal factors is essential. These factors include identifying relevant atmospheric features contributing to rainfall, addressing missing data, and developing a significant model to predict daily rainfall intensity using appropriate machine-learning techniques. The Principal Component Analysis (PCA) technique was employed to choose relevant environmental variables as input for the machine learning model, and various imputation methods were utilized to manage missing data, such as mean imputation and the KNN algorithm. To assess the performance of the RVM-based rainfall model, we collected a dataset from the Department of Irrigation and Drainage Malaysia. We used Nash-Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) as evaluation metrics. This study concluded that Relevance Vector Machine (RVM) models are suitable for forecasting future rainfall since they can support large rainfall extremes and generate reliable daily rainfall estimates based on rainfall extremes. In this study, the RVM model was employed to determine a predictive association between predictand variables and predictors.
A Study on Dengue Cases Detection based on Lazy Classifier Roslan, Nur Amiratun Nazihah; Mahdin, Hairulnizam; Hidayat, Rahmat; Hendrick
International Journal of Advanced Science Computing and Engineering Vol. 1 No. 1 (2019)
Publisher : SOTVI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (219.454 KB) | DOI: 10.62527/ijasce.1.1.10

Abstract

With the rise of social networking approach, there has been a surge of users generated content all over the world and with that in an era where technology advancement are up to the level where it could put us in a step ahead of pathogens and germination of diseases, we couldn’t help but to take advantage of that advancement and provide an early precaution measures to overcome it. Twitter on the other hand are one of the social media platform that provides access to a huge data availability. To manipulate those data and transform it into an important information that could be used in many different scopes that could help improve people’s lives for the better. In this paper, we gather a total of six algorithms from Lazy Classifier to compare between them on which algorithm suited the most with the diabetes dataset. This research are using WEKA as the data mining tool for data analyzation 
Predictive Analytics for Employability in Malaysian TVET with a Hybrid of Regression and Clustering Methods Mahdin, Hairulnizam; Nurwarsito, Heru; Baharum, Zirawani; Kamri, Khairol Anuar; Hassan, Azman; Haw, Su-Cheng; Arshad, Mohammad Syafwan
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.4516

Abstract

Graduate employability remains a high concern for Technical and Vocational Education and Training (TVET) institutions, particularly within Malaysia’s Technical University Network (MTUN), where producing industry-ready graduates is a central goal. While machine learning has transformed fields like healthcare and finance, its application in vocational education remains underexplored—particularly for employability prediction. This study addresses this gap by hybridizing decision trees and clustering to uncover non-linear patterns in student survey data. Guided by Human Capital Theory and SERVQUAL, which inform variable selection (e.g., technical skills as productivity investments), this study integrates multiple linear regression, decision tree regression, and K-Means clustering to identify significant predictors and uncover latent student groupings. Using a publicly available dataset of Likert-scale responses from MTUN students, technical skills and supervisory support consistently emerged as the most impactful employability predictors. Communication showed moderate influence, while training delivery and problem-solving exhibited variable effects depending on the modelling approach. Unlike regression, decision trees revealed non-linear interaction thresholds. For example, students with SVR < 3.5 and TS < 4.0 had 40% lower employability scores, suggesting targeted mentoring could yield disproportionate improvements. Clustering revealed three distinct student profiles, which could support data-driven interventions. This hybrid framework demonstrates the potential for integrating machine learning into institutional analytics for proactive support of employability.
An Efficient Unknown Detection Approach for RFID Data Stream Management System Yaacob, Siti Salwani; Mahdin, Hairulnizam; Wijayanto, Inung; Aamir, Muhammad; Jaya, M. Izham; Mohd Radzuan, Nabilah Filzah; Mubarak-Ali, Al-Fahim
JOIV : International Journal on Informatics Visualization Vol 9, No 6 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.6.2824

Abstract

The presence of unknown RFID tags can occur when new, unread tagged objects are introduced into the system, either accidentally or intentionally. Additionally, unknown tags can result from tag duplication errors, where multiple tags have the same identifier, or tag malfunctions, where a tag fails to transmit its identifier correctly. This research addresses the critical issue of detecting unknown tags, focusing on optimizing processing time and energy efficiency in terms of memory usage when detecting these tags. A novel algorithm called SWOR (Sliding Window XOR-based Detection) is introduced, specifically designed to identify unknown tags within RFID data streams. SWOR utilizes a sliding window mechanism combined with an XOR filter, enabling efficient detection of unknown tags while reducing unnecessary processing, which can lead to prolonged processing times, high memory consumption, and scalability issues. Experimental results demonstrate that SWOR decreases execution time by an average of 27% across various tests, outperforming existing approaches in terms of processing time for RFID event streams. The materials and methods employed include comprehensive simulations and real-world RFID data streams to validate the algorithm's effectiveness. This study highlights the potential for significant improvements in RFID system efficiency and paves the way for future research in optimizing RFID tag detection methodologies. The implications for further research include exploring the integration of SWOR with other RFID system components and examining its performance in diverse operational environments. This research contributes to the development of more robust and efficient RFID systems, thereby enhancing their reliability and scalability for various future applications.
A Systematic Review of Anomaly Detection within High Dimensional and Multivariate Data Suboh, Syahirah; Aziz, Izzatdin Abdul; Shaharudin, Shazlyn Milleana; Ismail, Saidatul Akmar; Mahdin, Hairulnizam
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1297

Abstract

In data analysis, recognizing unusual patterns (outliers’ analysis or anomaly detection) plays a crucial role in identifying critical events. Because of its widespread use in many applications, it remains an important and extensive research brand in data mining. As a result, numerous techniques for finding anomalies have been developed, and more are still being worked on. Researchers can gain vital knowledge by identifying anomalies, which helps them make better meaningful data analyses. However, anomaly detection is even more challenging when the datasets are high-dimensional and multivariate. In the literature, anomaly detection has received much attention but not as much as anomaly detection, specifically in high dimensional and multivariate conditions. This paper systematically reviews the existing related techniques and presents extensive coverage of challenges and perspectives of anomaly detection within high-dimensional and multivariate data. At the same time, it provides a clear insight into the techniques developed for anomaly detection problems. This paper aims to help select the best technique that suits its rightful purpose. It has been found that PCA, DOBIN, Stray algorithm, and DAE-KNN have a high learning rate compared to Random projection, ROBEM, and OCP methods. Overall, most methods have shown an excellent ability to tackle the curse of dimensionality and multivariate features to perform anomaly detection. Moreover, a comparison of each algorithm for anomaly detection is also provided to produce a better algorithm. Finally, it would be a line of future studies to extend by comparing the methods on other domain-specific datasets and offering a comprehensive anomaly interpretation in describing the truth of anomalies.