Claim Missing Document
Check
Articles

Found 3 Documents
Search

REACTOR CAVITY COOLING SYSTEM WITH PASSIVE SAFETY FEATURES ON RDE: THERMAL ANALYSIS DURING ACCIDENT Rahayu Kusumastuti; Sriyono Sriyono; Mulya Juarsa; Hendro Tjahjono; I. D. Irianto; Topan Setiadipura; D. H. Salimy; A. Hafid
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 21, No 2 (2019): JUNI 2019
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1878.724 KB) | DOI: 10.17146/tdm.2019.21.2.5499

Abstract

Reaktor Daya Eksperimental (RDE) is an experimental power reactor based on HTGR technology that implements inherent safety system. Its safety systems are in compliance with “defense in depth” philosophy. RDE is also equipped with reactor cavity cooling system (RCCS) used to remove the heat transferred from the reactor vessel to the containment structure. The RCCS is designed to fulfil this role by maintain the reactor vessel under the maximum allowable temperature during normal operation and protecting the containment structure in the event of failure of all passive cooling systems. The performance and reliability of the RCCS, therefore, are considered as critical factors in determining maximum design power level related to heat removal. RCCS for RDE will use a novel shape to efficiently remove the heat released from the RPV through thermal radiation and natural convection. This paper discusses the calculation of RCCS thermal analysis during accident. The RPV temperature must be maintained below 65ºC. The accident is assumed that there is no electricity from diesel generator supplied to the blower. The methodology used is based on the calculation of mathematical model of the RCCS in the passive mode. The heat is released through cavity by natural convection, in which the RCCS is capable to withdraw the heat at the rate of 50.54 kW per hour.Keywords: Passive safety, RCCS, RDE, Thermal analysis
Optimisasi Ukuran Teras High Temperature Gass-cooled Reactor (HTGR) dengan Daya 30 MWt Tipe Pebble Bed Berbasis Bahan Bakar Uranium Desi Armanita; Dian Fitriyani; Topan Setiadipura
Jurnal Fisika Unand Vol 9 No 1 (2020)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (407.68 KB) | DOI: 10.25077/jfu.9.1.100-109.2020

Abstract

Telah dilakukan optimasi ukuran teras Reaktor daya Eksperimental (RDE). Optimasi ini bertujuan untuk memperoleh ukuran teras yang optimal untuk RDE 30 MWt berdasarkan aspek neutronik antara lain discharge burn up, fuel residence time dan distribusi daya dan aspek keselamatan. Pada tahap awal dilakukan optimasi pass bahan bakar. Pass bahan bakar menyatakan jumlah sirkulasi bahan bakar ke teras reaktor dan parameter optimasi pass adalah nilai power peaking factor mendekati 1, discharge burn up tinggi serta memiliki temperatur puncak bahan bakar setelah DLOFC rendah. Berdasarkan parameter tersebut didapatkan pass optimal adalah 5 pass. Variasi ukuran teras ditentukan dengan dua cara, yaitu variasi ukuran teras pada volume tetap dan variasi tinggi teras pada diameter tetap. Tahap selanjutnya, terhadap ukuran teras yang optimal, dilakukan optimasi fraksi enrichment dan heavy metal loading bahan bakar. Dari hasil perhitungan diperoleh bahwa pada volume tetap (5 m3) parameter-parameter neutronik bernilai optimal jika ukuran diameter teras 1,5 m dan tinggi 2,83 m, sedangkan pada diameter teras tetap (1,8 m) parameter-parameter neutronik optimal pada ukuran tinggi teras 3,931 m.  Pada kedua ukuran teras ini aspek keselamatan, discharge burn up dan fuel residence time optimal pada enrichment 17% dan heavy metal loading 6 grU/pebble. Core size optimization of Experimental Power Reactor (EPR) has been done. This optimization aims to obtain the optimal core size for the RDE 30 MWt based on the neutronik aspect among other discharge burn ups, fuel residence time, power distribution and safety aspect. In the early stages the fuel pass optimization is done. The fuel pass is the amount of fuel circulation to the reactor core and the pass optimization parameter is the value of power peaking factor approaching 1, high discharge burnup as well as having a fuel peak temperature after DLOFC is low. According to the parameters, the optimal pass is 5 passes. The variation in the size of the core is determined in two ways, which is the core size variation on fixed volumes and a high variation of the core at fixed diameter. The next stage, against the optimal core size, carried out the optimization of the fraction of enrichment and heavy metal loading fuel.  From the results of the calculations obtained that on a fixed volume (5 m3) neutronik parameters are optimal if the size of the core diameter is 1.5 m and height 2.83 m, while on the fixed diameter of the ratio (1.8 m) The optimal neutronik parameters of on the size Height of core 3.931 m.  On both of these core sizes are safety aspects, discharge burn up and fuel residence time is optimal on the enrichment of 17% and heavy metal loading 6 grU/pebble.
DESIGN SCENARIO AND ANALYSIS FOR PRELIMINARY SPECIFICATION OF STEAM GENERATOR IN THE PELUIT-40 Byan Wahyu Riyandwita; Muhammad Subhan; Topan Setiadipura; Almira Citra Amelia; Sri Hastuty; Purwo Kadarno; Farisy Yogatama Sulistyo
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 1 (2023): February 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6778

Abstract

The helical steam generator is connected to an HTGR-type nuclear reactor called PeLUIt-40 for steam production. Steam is used to generate electricity and hydrogen. A once-through helical tube bundle was employed because of its ability to endure mechanical stress due to thermal expansion, high resistance to flow-induced vibrations, and better thermal performance compared to a straight tube one. To produce the targeted steam, a design analysis of the once-through helical steam generator needs to be conducted. A quick evaluation method was used to predict the preliminary specifications required for steam production. Simple thermodynamic calculations combined with empirical heat transfer coefficients covering convective and boiling processes at constant pressure were used to carry out the analysis. Two scenarios were conducted to evaluate the design choice based on the previous design of RDE-10.