This Author published in this journals
All Journal Jurnal EECCIS
Muhammad Rofiki Adli
Jurusan Teknik Elektro, Universitas Sultan Ageng Tirtayasa, Cilegon

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi 12 Motif Batik Banten Menggunakan Support Vector Machine Romi Wiryadinata; Muhammad Rofiki Adli; Rian Fahrizal; Rocky Alfanz
Jurnal EECCIS Vol 13, No 1 (2019)
Publisher : Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Batik adalah kain bergambar yang ditulis atau dicap dengan canting yang terbuat dari tembaga atau plat seng, agar dapat menghasilkan seni keindahan yang artistik dan klasik. Hingga saat ini masih banyak masyarakat Indonesia yang belum mengetahui dengan baik nama-nama aneka ragam motif batik yang menjadi kekayaan intelektual yang telah diakui oleh UNESCO (United Nations Educational, Scientific, and Cultural Organization) pada 2 Oktober 2009 sebagai salah satu warisan kebudayaan dunia yang berasal dari Indonesia. SVM (support vector machine) adalah metode learning machine yang bekerja dengan tujuan menemukan hyperlane terbaik yang memisahkan dua buah kelas atau lebih pada input space. Tujuan dari penelitian ini adalah untuk mengklasifikasi 12 motif batik Banten menggunakan metode SVM. Penelitian dilakukan secara beberapa tahap yaitu resize untuk menyamakan dimensi citra, grayscale untuk menyederhanakan citra dengan mengubah menjadi citra aras keabuan, median filter untuk menghilangkan noise pada batik, dan ekstraksi ciri sebagai masukan untuk klasifikasi menggunakan SVM. Hasil klasifikasi menggunakan SVM orde 1 yaitu sebesar 85%, dan untuk orde 2 sebesar 87,2%.