Claim Missing Document
Check
Articles

Found 11 Documents
Search

Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation Heru Bagus Pulunggono; Siswanto Siswanto; Husni Mubarok; Happy Widiastuti; Nizam Tambusai; Moh Zulfajrin; Syaiful Anwar; Darmono Taniwiryono; Basuki Sumawinata; Supiandi Sabiham
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3247

Abstract

The amount of CO2 gas emissions in drained peatland for oil palm cultivation has been widely reported. However, the research addressing the contribution of litter respiration to peat and total respiration and its relationship with several environmental factors is found rare. The aim of this study was to measure peat and heterogeneous litter respiration of drained tropical peat in one year at a distance of 2.25 m and 4.50 m from mature oil palm trees of 14 years using the chamber method (Licor Li-830). In addition to CO2 efflux, we measured other environmental parameters, including peat temperature (10 cm depth), air temperature, groundwater table (GWL), and rainfall. Results showed that the mean total peat respiration (Rt) was 12.06 g CO2 m-2day-1, which consisted of 68% (8.24 g CO2 m-2day-1) peat (Rp) and root (Rr) respiration and 32% (3.84 g CO2  m-2day-1) of litter respiration (Rl) at the distance of 2.25 m from the palm tree. Meanwhile, at a farther distance, the Rt was 12.49 g CO2m-2day-1, the contribution of Rp was 56% (6.78 g CO2 m-2day-1), and Rl was higher than the closest distance (46%; 5.71 g CO2 m-2day-1). Thus, one-year observation resulting the mean Rt and Rr was 0.07–0.08 Mg CO2 ha-1 day-1, while Rl was 0.04–0.06 Mg CO2 ha-1 day-1. The means of Rt, Rp, and Rl were significantly different in the dry season than those recorded in the rainy season. The climatic-related variable such as peat and air temperature were chiefly governing respiration in peat under mature oil palm plantation, whereas the importance of other variables present at particular conditions. This paper provides valuable information concerning respiration in peat, especially for litter contribution and its relationship with environmental factors in peatland, contributing to global CO2 emission. 
Potensi fungisida organik untuk pengendalian Ganoderma pada tanaman kelapa sawit [Potency of organic fungicide to controle Ganoderma sp. of oil palm] Happy WIDIASTUTI; Deden Dewantara ERIS; Djoko SANTOSO
E-Journal Menara Perkebunan Vol 84, No 2 (2016): Desember 2016
Publisher : INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.615 KB) | DOI: 10.22302/iribb.jur.mp.v84i2.223

Abstract

Ganoderma sp. is an important pathogen causes stem rot disease in the cultivation of oil palm. Control of Ganoderma sp. using formulas contain natural organic active ingredients being developed by Indonesian Research Institute for Biotechnology and Bioindustry. Organic fungicide in two formula i.e.   liquid  and  pasta was  applied for a  period  of 3 months by drenching the uncolonized tissue of stem. Five treatments tested were drenching applications of organic fungicide  1) per week in liquid formula, 2) every 2 weeks in liquid formula, 3) every 4 weeks in liquid formula, 4) every 4 weeks in paste formula, and 5) control. Each of the treatments was treated on the 25 palm trees. The performance of the plant and Ganoderma sp. were observed for five months and subsequential incubation continued for 2 months to analyzed the levels of N, P, K and Cu in the leaves and the oil content of the palm fruits while FFB production was observed from 7 up to 13 months after application. Results of the experiments showed that the application of organic fungicide increased the growth of palm roots and especially weekly application produced the best compared with other treatments. There was a tendency of opening of leaf spear and induce oil palm to form a female flowers, increased levels of N, P, and K particularly on the treatment of applications every two weeks. The production of fruit average (PFA) and weights bunches at 5 months after application seems to rise particularly in the application of organic fungicide every week. Palm fruit oil content based either on fresh or dry weight was higher in applications of organic fungicide every 2 weeks compared with other treatments.[Keywords: Ganoderma diseases management, application times, organic pesticides, mature plants]  AbstrakGanoderma sp. jamur penyebab penyakit busuk pangkal batang merupakan patogen utama pada tanaman kelapa sawit. Pengendalian Ganoderma sp. menggunakan formula berbahan aktif organik alami sedang dikembangkan Pusat Penelitian Bioteknologi dan Bioindustri Indonesia. Fungisida organik diberikan dalam jangka waktu 3 bulan  yang diaplikasi dengan cara terlebih dahulu mengikis batang sawit terserang hingga jaringan segar. Lima perlakuan yang diuji adalah aplikasi fungisida organik tiap  1) minggu dalam formula cair, 2) 2 minggu dalam formula cair, 3) 4 minggu dalam formula cair, 4) 4 minggu dalam formula pasta, dan 5) kontrol. Masing-masing perlakuan diaplikasi pada 25 pohon kelapa sawit. Keragaan tanaman dan Ganoderma sp. diamati selama lima bulan dan selanjutnya inkubasi dilanjutkan selama 2 bulan untuk analisis kadar hara N, P, K dan Cu daun dan kadar minyak buah sawit, sedangkan produksi TBS diamati dari 7 hingga 13 bulan setelah aplikasi. Hasil percobaan menunjukkan bahwa pemberian fungisida organik tiap minggu menghasilkan perakaran yang paling banyak dibandingkan dengan perlakuan lainnya.  Terdapat kecenderungan terjadi pembukaan daun tombak dan peningkatan jumlah pohon yang membentuk bunga betina, peningkatan kadar hara N, P, dan K khususnya pada perlakuan aplikasi fungisida organik tiap dua minggu. Rata rata  bobot  tandan  (RBT)  dan bobot tandan  pada 5 bulan setelah aplikasi nampak meningkat khususnya pada perlakuan aplikasi fungisida organik tiap minggu. Kadar minyak buah sawit baik berdasarkan  bobot basah maupun kering lebih tinggi pada perlakuan aplikasi fungisida organik tiap 2 minggu dibandingkan dengan perlakuan lainnya.  [Kata kunci: pengendalian Ganoderma, frekuensi aplikasi, fungisida organik, tanaman sawit menghasilkan]
Respons tanaman tebu (Saccharum officinarum L.) terhadap aplikasi konsorsium biostimulan di tiga tipologi lahan Ciptadi Achmad YUSUP; Deddy PURWANTORO; Happy WIDIASTUTI; . SISWANTO; Djoko SANTOSO; . PRIYONO
E-Journal Menara Perkebunan Vol 89, No 2 (2021): Oktober, 2021
Publisher : INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iribb.jur.mp.v89i2.457

Abstract

The consortium biostimulant combines several types of biostimulant applied holistically, such as phytohormones to induce physiological processes, humic acid to improve nutrition intake and land fertility, and biofertilizer arbuscular mycorrhizal fungi to improve abiotic stress tolerance. The objectives of this research were to analyze the effect of application consortium biostimulant on the growth and productivity of Bululawang sugarcane variety planted in three land typologies, i.e. irrigated heavy soil with good drainage (BPL), irrigated heavy soil with poor drainage (BPJ), and rainfed light soil with good drainage (RHL). The research was conducted on plant cane (PC) sugarcane areal in Lumajang Regency, East Java, from July 2019 to September 2020. The treatment plot area was 1 ha for each land typologies, and the observation were conducted on 10 m plant row with ten times replications. Each treatment was replicated ten times. The results showed that the application of consortium biostimulant could induce faster growth of sugarcane shoots and better roots at one month after planting (MAP). Stalk height and diameter showed significantly different values between treatment and control at the plant age 6 to 12 MAP. In addition, the sugarcane stalk weight per meter row also increases by 13.72 – 28.57%. The growth performance of sugarcane on a commercial scale increased, also sugarcane productivity increased by 11.08 – 20.36%. The potential sugar yield increased by 15.05% in BPL land typology, 4.9% in BPJ land typology, and 9.7% in RHL land typology. The difference in land typologies affected the effectiveness of the consortium biostimulant application in increasing sugarcane productivity.
Application of organic fungicide in controlling basal stem rot disease for mature oil palm Happy WIDIASTUTI; Hayati MINARSIH; Djoko SANTOSO; Deden Dewantara ERIS; Galuh Wening PERMATASARI
E-Journal Menara Perkebunan Vol 88, No 1 (2020): April, 2020
Publisher : INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (200.537 KB) | DOI: 10.22302/iribb.jur.mp.v88i1.368

Abstract

Ganoderma is a major pathogen in oil palm crops. Some efforts related to control the growth of Ganoderma have been conducted but still have not found an effective method. This study aims to develop an organic fungicide that has been tested in vitro, which effective in controlling the growth of Ganoderma. The optimization carried out includes the determination of the dose and time interval for application in 13-year-old mature oil palm. This organic fungicide application was the continuation of application during the previous year especially for the two best treatment which is application organic fungicide every week (1w) and every two weeks (2w). In this study, the treatments tested were three levels dose of organic fungicide (0, 1x and 2x) and two types of frequency application, i.e. every week (1w) and every other week (2w). The results showed that the best application of organic fungicides was every week application with twice doses (1w.2x), based on the parameters of the inhibition of Ganoderma’s fruiting body formation, primary and secondary root formation, the opening of spear leaves, and harvesting parameters. The application of organic fungicide able to recover the oil palm infected Ganoderma sp., with increasing the fresh fruit bunch and its weight around 70% and 78%, respectively.
Formulasi bioinsektisida Bacillus thuringiensis isolat indigenos untuk pengendalian Hyposidra talaca pada tanaman teh (Formulation of indigenous isolate of Bacillus thuringiensis bioinsecticide to control Hyposidra talaca on tea) Happy WIDIASTUTI; TRI - PANJI; Ciptadi Achmad YUSUP; Iman RUSMANA; Tri Eko WAHYONO
E-Journal Menara Perkebunan Vol 87, No 1 (2019): April, 2019
Publisher : INDONESIAN RESEARCH INSTITUTE FOR BIOTECHNOLOGY AND BIOINDUSTRY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2950.786 KB) | DOI: 10.22302/iribb.jur.mp.v87i1.329

Abstract

A study has been conducted to develop indigenousBacillusthuringiensisbioinsecticide. Preliminary study has been conducted to explore B. thuringiensisfrom sample of soil, leaf, and infected larvae from selected tea area as well as another area such as cocoa, and acasia. The result showed that based on the colony morphology, it was found 10 isolateswith the characteristics of B. thuringiensis colony.  Assessed of the ability to formed crystal using phase contrast microscope and staining revealed that 4 isolates as crystal protein forming isolates. The four isolates used as active coumpound of bioinsecticide. The best formula based on the viability of bacteria was the one withwhite clay as a carrier. While the best liquid formula based on the similar characteristic was using maltosa as osmoprotectant. Theassessment ofthetoxisity B. thuringiensistowards Hyposidra talacalarvae showed that B. thuringiensiscould control H. talacalarvaeup to 37.5%. However, the toxicity need longer periode compared to that commercial B. thuringiensisbioinsecticide. [Keywords:Bt insecticide, cypermethrine, integrated pest management, Tea looper].AbstrakPenelitian telah dilakukan untuk mengembangkan bioinsektisida berbahan aktif B. thuringiensisdari isolat asli Indonesia. Eksplorasi B. thuringiensisdari contoh berupa tanah, daun, dan ulat dari kebun teh telah dilakukan demikian pula dari habitat lain seperti kebun kakao dan akasia.  Berdasarkan morfologi koloni diperoleh 10 isolat yang menunjukkan ciri-ciri koloni B. thuringiensis. Selanjutnyaisolat yang diperoleh diuji kemampuan pembentukan kristal protein dengan pewarnaan dan pengamatan mikroskop phase kontras dan menghasilkan 4 isolat yang mampu membentuk kristal protein. Selanjutnya keempat isolat yang diperoleh digunakan sebagai bahan aktif dalam formulasi bioinsektisida. Formula terbaik berdasarkan kriteria viabilitas bakteri adalah formula yang menggunakan bahan pembawa berupa white clay. Formula terbaik untuk bioinsektida cair berdasarkan kriteria viabilitas B. thuringiensisdan kejernihan bioinsektisida adalah menggunakan maltosesebagai osmoprotektan.Pada pengujian toksisitas isolat B. thuringiensisterhadap larvaulat jengkal(Hyposidra talaca)menunjukkan bahwa B. thuringiensishasil percobaan dapat mengen-dalikan larva ulat jengkalhingga 37,5%. Namun demikian toksisitasnya memerlukan waktu yang lebih lama dibandingkan dengan bioinsektisida berbahan aktif B. thuringiensiskomersial. [Kata kuci: Bioinsektisida Bt, pengendalian hama terpadu, sipermetrin, ulat jengkal teh].
Trenching Construction in Peat Soil and the DGGE Analyses of nif Gene and Activity of Dehydrogenase HAPPY WIDIASTUTI; DARMONO TANIWIRYONO; IMAN RUSMANA; GALUH WENING PERMATASARI
Microbiology Indonesia Vol. 14 No. 4 (2020): December 2020
Publisher : Indonesian Society for microbiology

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2068.239 KB) | DOI: 10.5454/mi.14.4.2

Abstract

Basal stem rot (BSR) is a major disease in oil palm crops which also possible happen on peat soils. Ganoderma boninense is the pathogen that causes this disease infects the plants through the root. Maintaining root health expects to reduce the intensity of the occurrence of BSR disease and its spread. In this research, trenching construction and maintenance is carried out which aims to break the spread and activity of Ganoderma. Trenching maintenance is carried out by giving empty bunches oil palm inoculated with decomposer, Azotobacter inoculants and humic acid. Four treatments tested were trenched (T1) and untrenched (T0) in combination with two level of Ganoderma attack, which are moderate (Mo) and severe (Se). The soil sample were retrieved from different point, which are in the trenching area (TR), harvest path zone (H), and frond stack zone (M). The soil characteristic including microbe abundance, dehydrogenase activity, and PCR-DGGE of microbe community in each treatment were analyzed to reveal the effect of trenching construction. The results showed that trenching implementation reveals major results related to the abundance of microbes and fungi population, supported by the enhancement of dehydrogenase activity at the block with moderate Ganoderma attack. In addition, the DGGE study effectively separates the microbial population of four separate treatment into two clusters, splitting the grouping depending on the Ganoderma level attack. This study shows enhancement of soil characteristics biologically and nutrients status of oil palm leaves especially P, as the results of trenching construction in peatland. Keywords: peatland; oil palm; trenching, DGGE; microbes
Exploration of lignocellulolytic microbes in oil palm rhizosphere on peat soils and their respiration activities Happy Widiastuti; Siswanto; Saeful Anwar; Supiandi Sabiham; Husni Mubarok; Darmono Taniwiryono; Basuki Sumawinata; Heru B. Pulunggono
Microbiology Indonesia Vol. 15 No. 1 (2021): March 2021
Publisher : Indonesian Society for microbiology

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (798.494 KB) | DOI: 10.5454/mi.15.1.5

Abstract

Microbial respiration in peatlands plays a role in contributing CO2 emissions. Studies of microbial exploration and respiration on peat soils in oil palm plantations have not been widely reported. This study aims to explore lignocellulolytic microbes found in peat soils in compared with mineral soils planted with 12-year-old oil palm. Exploration is done by growing the samples on the specific medium of each group of microbial functions. In the next stage, the culture obtained was analysed the respiration activity based on the oxidation of peroxidase catalysis using a chromogen substrate (tetramethylbenzidine) and measured using spectrophotometry at a wavelength of 450 nm. The results showed that both in mineral and peat planted with oil palm in a depths of 0-20 cm were found lignolytic fungi with a population of 17 x 102. Similar results were also found in peat with fern vegetation but at a depth of 20-40 cm. Lignolytic bacteria (methylene blue degradation) can be found on peat soils planted with oil palm at a depth of 0-60 cm and the population increases with increasing depth. This bacterium is also found on peat soils with fern vegetation and mineral soils planted with palm. At a depth of 0-20 cm the population of lignolytic bacteria in non-oil palm peat is highest. Cellulolytic bacteria were isolated at a depth of 0-60 cm. Cellulolytic bacterial populations were highest in oil palm peat at all depths compared to other samples. Respiration analysis of several dominant isolates showed fairly high variation between microbial function groups and within the same function group. The lignolytic microbial group degrading methylene blue showed high respiration activity and varies greatly (0.19-1.85 MER). While the respiration activity of cellulolytic bacteria ranged from 0.45 to 0.62 MER.
Potensi fungisida organik untuk pengendalian Ganoderma pada tanaman kelapa sawit [Potency of organic fungicide to controle Ganoderma sp. of oil palm] Happy WIDIASTUTI; Deden Dewantara ERIS; Djoko SANTOSO
Menara Perkebunan Vol. 84 No. 2 (2016): 84 (2), 2016
Publisher : INDONESIAN OIL PALM RESEARCH INSTITUTE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iribb.jur.mp.v84i2.223

Abstract

Ganoderma sp. is an important pathogen causes stem rot disease in the cultivation of oil palm. Control of Ganoderma sp. using formulas contain natural organic active ingredients being developed by Indonesian Research Institute for Biotechnology and Bioindustry. Organic fungicide in two formula i.e.   liquid  and  pasta was  applied for a  period  of 3 months by drenching the uncolonized tissue of stem. Five treatments tested were drenching applications of organic fungicide  1) per week in liquid formula, 2) every 2 weeks in liquid formula, 3) every 4 weeks in liquid formula, 4) every 4 weeks in paste formula, and 5) control. Each of the treatments was treated on the 25 palm trees. The performance of the plant and Ganoderma sp. were observed for five months and subsequential incubation continued for 2 months to analyzed the levels of N, P, K and Cu in the leaves and the oil content of the palm fruits while FFB production was observed from 7 up to 13 months after application. Results of the experiments showed that the application of organic fungicide increased the growth of palm roots and especially weekly application produced the best compared with other treatments. There was a tendency of opening of leaf spear and induce oil palm to form a female flowers, increased levels of N, P, and K particularly on the treatment of applications every two weeks. The production of fruit average (PFA) and weights bunches at 5 months after application seems to rise particularly in the application of organic fungicide every week. Palm fruit oil content based either on fresh or dry weight was higher in applications of organic fungicide every 2 weeks compared with other treatments.[Keywords: Ganoderma diseases management, application times, organic pesticides, mature plants]  AbstrakGanoderma sp. jamur penyebab penyakit busuk pangkal batang merupakan patogen utama pada tanaman kelapa sawit. Pengendalian Ganoderma sp. menggunakan formula berbahan aktif organik alami sedang dikembangkan Pusat Penelitian Bioteknologi dan Bioindustri Indonesia. Fungisida organik diberikan dalam jangka waktu 3 bulan  yang diaplikasi dengan cara terlebih dahulu mengikis batang sawit terserang hingga jaringan segar. Lima perlakuan yang diuji adalah aplikasi fungisida organik tiap  1) minggu dalam formula cair, 2) 2 minggu dalam formula cair, 3) 4 minggu dalam formula cair, 4) 4 minggu dalam formula pasta, dan 5) kontrol. Masing-masing perlakuan diaplikasi pada 25 pohon kelapa sawit. Keragaan tanaman dan Ganoderma sp. diamati selama lima bulan dan selanjutnya inkubasi dilanjutkan selama 2 bulan untuk analisis kadar hara N, P, K dan Cu daun dan kadar minyak buah sawit, sedangkan produksi TBS diamati dari 7 hingga 13 bulan setelah aplikasi. Hasil percobaan menunjukkan bahwa pemberian fungisida organik tiap minggu menghasilkan perakaran yang paling banyak dibandingkan dengan perlakuan lainnya.  Terdapat kecenderungan terjadi pembukaan daun tombak dan peningkatan jumlah pohon yang membentuk bunga betina, peningkatan kadar hara N, P, dan K khususnya pada perlakuan aplikasi fungisida organik tiap dua minggu. Rata rata  bobot  tandan  (RBT)  dan bobot tandan  pada 5 bulan setelah aplikasi nampak meningkat khususnya pada perlakuan aplikasi fungisida organik tiap minggu. Kadar minyak buah sawit baik berdasarkan  bobot basah maupun kering lebih tinggi pada perlakuan aplikasi fungisida organik tiap 2 minggu dibandingkan dengan perlakuan lainnya.  [Kata kunci: pengendalian Ganoderma, frekuensi aplikasi, fungisida organik, tanaman sawit menghasilkan]
Formulasi bioinsektisida Bacillus thuringiensis isolat indigenos untuk pengendalian Hyposidra talaca pada tanaman teh (Formulation of indigenous isolate of Bacillus thuringiensis bioinsecticide to control Hyposidra talaca on tea) Happy WIDIASTUTI; TRI - PANJI; Ciptadi Achmad YUSUP; Iman RUSMANA; Tri Eko WAHYONO
Menara Perkebunan Vol. 87 No. 1 (2019): 87 (1), 2019
Publisher : INDONESIAN OIL PALM RESEARCH INSTITUTE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iribb.jur.mp.v87i1.329

Abstract

A study has been conducted to develop indigenousBacillusthuringiensisbioinsecticide. Preliminary study has been conducted to explore B. thuringiensisfrom sample of soil, leaf, and infected larvae from selected tea area as well as another area such as cocoa, and acasia. The result showed that based on the colony morphology, it was found 10 isolateswith the characteristics of B. thuringiensis colony.  Assessed of the ability to formed crystal using phase contrast microscope and staining revealed that 4 isolates as crystal protein forming isolates. The four isolates used as active coumpound of bioinsecticide. The best formula based on the viability of bacteria was the one withwhite clay as a carrier. While the best liquid formula based on the similar characteristic was using maltosa as osmoprotectant. Theassessment ofthetoxisity B. thuringiensistowards Hyposidra talacalarvae showed that B. thuringiensiscould control H. talacalarvaeup to 37.5%. However, the toxicity need longer periode compared to that commercial B. thuringiensisbioinsecticide. [Keywords:Bt insecticide, cypermethrine, integrated pest management, Tea looper].AbstrakPenelitian telah dilakukan untuk mengembangkan bioinsektisida berbahan aktif B. thuringiensisdari isolat asli Indonesia. Eksplorasi B. thuringiensisdari contoh berupa tanah, daun, dan ulat dari kebun teh telah dilakukan demikian pula dari habitat lain seperti kebun kakao dan akasia.  Berdasarkan morfologi koloni diperoleh 10 isolat yang menunjukkan ciri-ciri koloni B. thuringiensis. Selanjutnyaisolat yang diperoleh diuji kemampuan pembentukan kristal protein dengan pewarnaan dan pengamatan mikroskop phase kontras dan menghasilkan 4 isolat yang mampu membentuk kristal protein. Selanjutnya keempat isolat yang diperoleh digunakan sebagai bahan aktif dalam formulasi bioinsektisida. Formula terbaik berdasarkan kriteria viabilitas bakteri adalah formula yang menggunakan bahan pembawa berupa white clay. Formula terbaik untuk bioinsektida cair berdasarkan kriteria viabilitas B. thuringiensisdan kejernihan bioinsektisida adalah menggunakan maltosesebagai osmoprotektan.Pada pengujian toksisitas isolat B. thuringiensisterhadap larvaulat jengkal(Hyposidra talaca)menunjukkan bahwa B. thuringiensishasil percobaan dapat mengen-dalikan larva ulat jengkalhingga 37,5%. Namun demikian toksisitasnya memerlukan waktu yang lebih lama dibandingkan dengan bioinsektisida berbahan aktif B. thuringiensiskomersial. [Kata kuci: Bioinsektisida Bt, pengendalian hama terpadu, sipermetrin, ulat jengkal teh].
Application of organic fungicide in controlling basal stem rot disease for mature oil palm Happy WIDIASTUTI; Hayati MINARSIH; Djoko SANTOSO; Deden Dewantara ERIS; Galuh Wening PERMATASARI
Menara Perkebunan Vol. 88 No. 1 (2020): 88 (1), 2020
Publisher : INDONESIAN OIL PALM RESEARCH INSTITUTE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iribb.jur.mp.v88i1.368

Abstract

Ganoderma is a major pathogen in oil palm crops. Some efforts related to control the growth of Ganoderma have been conducted but still have not found an effective method. This study aims to develop an organic fungicide that has been tested in vitro, which effective in controlling the growth of Ganoderma. The optimization carried out includes the determination of the dose and time interval for application in 13-year-old mature oil palm. This organic fungicide application was the continuation of application during the previous year especially for the two best treatment which is application organic fungicide every week (1w) and every two weeks (2w). In this study, the treatments tested were three levels dose of organic fungicide (0, 1x and 2x) and two types of frequency application, i.e. every week (1w) and every other week (2w). The results showed that the best application of organic fungicides was every week application with twice doses (1w.2x), based on the parameters of the inhibition of Ganoderma’s fruiting body formation, primary and secondary root formation, the opening of spear leaves, and harvesting parameters. The application of organic fungicide able to recover the oil palm infected Ganoderma sp., with increasing the fresh fruit bunch and its weight around 70% and 78%, respectively.