Claim Missing Document
Check
Articles

Found 18 Documents
Search

Analisis Dinamik pada Model Kanker Serviks dengan Vaksinasi dan Screening Kristanti, Karunia Theda; Trisilowati, Trisilowati; Widodo, Agus
Limits: Journal of Mathematics and Its Applications Vol 17, No 2 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v17i2.6901

Abstract

Pada paper ini dibahas analisis dinamik model penyebaran kanker serviks dengan melibatkan tindakan vaksinasi dan screening. Penyebab utama terjadinya kanker serviks adalah karena seseorang terinfeksi Human Papillomavirus (HPV). Infeksi ini dapat menular karena adanya kontak langsung melalui hubungan seksual antara subpopulasi wanita rentan dengan pria terinfeksi HPV maupun kontak langsung antara pria rentan dengan wanita terinfeksi HPV. Pada model ini diasumsikan vaksin diberikan pada subpopulasi wanita rentan saja dengan salah satu jenis vaksin. Sementara itu, screening dilakukan oleh subpopulasi wanita terifeksi HPV sebagai upaya deteksi dini untuk mencegah terjadinya kanker serviks. Hasil analisis dinamik menunjukkan bahwa model penyebaran kanker serviks dengan vaksinasi dan screening memiliki dua titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemi. Eksistensi dan kestabilan lokal titik kesetimbangan bergantung pada nilai angka reproduksi dasar R0. Berdasarkan hasil analisis, titik kesetimbangan bebas penyakit eksis tanpa syarat, sedangkan titik kesetimbangan endemi eksis jika R0>1. Titik kesetimbangan bebas penyakit bersifat stabil asimtotik lokal jika nilai R0<1 dan titik kesetimbangan endemi bersifat stabil asimtotik lokal jika memenuhi kriteria Routh-Hurwitz. Simulasi numerik yang dilakukan mendukung hasil analisis dinamik yang diperoleh. 
Peningkatan Kemampuan Perangkat Desa Gondowangi Kecamatan Wagir Kabupaten Malang Dalam Pengelolaan Sistem Informasi Data Kependudukan Terintegrasi Website Zuraidah Fitriah; Noor Hidayat; Trisilowati Trisilowati; Syaiful Anam; Candra Dewi
Journal of Innovation and Applied Technology Vol 7, No 1 (2021)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jiat.2021.007.01.15

Abstract

Dalam observasi awal diperoleh informasi tentang pengelolaan sistem informasi data kependudukan di desa Gondowangi belum dilakukan secara terintegrasi, dalam hal ini hanya dilakukan secara manual. Desa Gondowangi telah memiliki website, namun pengelolaan dilakukan oleh pihak luar perangkat desa, sehingga penyampaian informasi melalui website tersebut belum optimal. Agar pengelolaan website bisa lebih optimal, maka harus dilakukan peningkatan kemampuan perangkat desa dalam mengelola website (sebagai admin) dan mengintegrasikan hasil pengolahan data kependudukan dengan website. Dalam makalah ini diuraikan tentang upaya meningkatkan kemampuan perangkat desa Gondowangi dalam pengelolaan sistim informasi data kependudukan yang terintegrasi dengan website Desa Gondowangi. Pengelolaan dan pengolahan data dilakukan dengan menggunakan aplikasi yang tersedia pada Google, dalam hal ini Google Application.
The Effect of Smoking Behavior in the Human Population Growth of Lung Cancer Patients Lu’luul Wardah; Trisilowati Trisilowati; Wuryansari Muharini Kusumawinahyu
Natural B, Journal of Health and Environmental Sciences Vol 4, No 2 (2017)
Publisher : Natural B, Journal of Health and Environmental Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (471.679 KB) | DOI: 10.21776/ub.natural-b.2017.004.02.6

Abstract

This article discusses a model of lung cancer as the effect of smoking behavior on both active and passive smoker. There are four subpopulations in this model, namely susceptible subpopulation, active smoker subpopulation, passive smoker subpopulation, and subpopulation of lung cancer.  Dynamical analysis is conducted to determine the equilibrium point, existence condition for equilibrium point, and analyze their stability. Based on analysis result, there are three equilibrium points. First equilibrium point shows that all subpopulations extinct. Second equilibrium point shows that only susceptible subpopulation can survive, and the last equilibrium point shows that all subpopulations can survive. First equilibrium point always exists while the others exist under certain condition. The stability of first equilibrium point can be reached when the intrinsic growth rate is less than the death rate. Whereas, the others equilibrium points will be stable under certain condition. Numerical simulation is performed to illustrate the analysis result. It is shown that numerical results are in accordance with analysis result. These numerical simulations also indicate that the rate of passive smoker plays important role in the growth rate of lung cancer.
Local Sensitivity Analysis of COVID-19 Epidemic with Quarantine and Isolation using Normalized Index Muhammad Abdurrahman Rois; Trisilowati Trisilowati; Ummu Habibah
Telematika Vol 14, No 1: February (2021)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v14i1.1191

Abstract

This study discusses the sensitivity analysis of parameters, namely the COVID-19 model, by dividing the population into seven subpopulations: susceptible, exposed, symptomatic infection, asymptomatic infection, quarantine, isolation, and recovered. The solution to the ordinary differential equation for the COVID-19 model using the fourth-order Runge-Kutta numerical method explains that COVID-19 is endemic, as evidenced by the basic reproduction number (R0) of 7.5. It means 1 individual can infect 7 to 8 individuals. Then  is calculated using the next-generation matrix method. Based on the value of R0, a parameter sensitivity analysis is implemented to specify the most influential parameters in the spread of the COVID-19 outbreak. This can provide input on the selection of appropriate control measures to solve the epidemic from COVID-19. The results of the sensitivity analysis are the parameters that have the most influence on the model.
Simulation of Tumor Growth Model and Its Interaction with Natural-Killer Cells and T Cells Cholifatul Maulidiah; Trisilowati Trisilowati; Ummu Habibah
Research Journal of Life Science Vol 6, No 3 (2019)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.rjls.2019.006.03.5

Abstract

This research studies about tumor growth model by involving immune system. Cells in the immune system, for instance natural killer (NK) cells and T cells, have prominent role in recognizing and eliminating tumor cells. In this paper, we construct the tumor growth model consisting of four populations namely tumor cells, NK cells, CD8+T cells, and CD4+T cells which is in the form of a non-linear differential equation. The analysis result shows that there are three tumor free equilibrium points and one coexisting equilibrium point. Some tumor free equilibrium and tumor equilibrium point exist and it is stable under certain conditions. Finally, numerical simulation is carried out to illustrate analysis result. From sensitivity analysis, it is found that the most  sensitive parameter that influence the growth rate of tumor cells are the reciprocal carrying capacity of tumor cells and the killing rate of CD8+T cells by tumor cells.
Dynamical Analysis of the Symbiotic Model of Commensalism in Four Populations with Michaelis-Menten type Harvesting in the First Commensal Population Nurmaini Puspitasari; Wuryansari Muharini Kusumawinahyu; Trisilowati Trisilowati
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 5, No 2 (2021): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v5i2.4727

Abstract

This study discusses the dynamical analysis of the symbiosis commensalism and parasitism models in four populations with Michaelis-Menten type harvesting in the first commensal population. This model is formed from a construction of the symbiotic model of commensalism and parasitism by harvesting the commensal population. This construction is by adding a new population, namely the second commensal population. Furthermore, it will be investigated that the four populations can coexist. The first analysis is to identify the conditions of existence at all equilibrium points along with the conditions for their existence and local stability around the equilibrium point along with the stability requirements. From this model, it is obtained sixteen points of equilibrium, namely one point of extinction in the four populations, four points of extinction in all three populations, six points of extinction in both populations, four points of extinction in one population and one point where the four populations can coexist. Of the sixteen points, only four points can be asymptotically stable if they meet the stability conditions that have been determined. Finally, a numerical simulation is performed to describe the model behavior. In this study, the method used in numerical simulation is the RK-4 method. The numerical simulation results that have been obtained support the dynamical analysis results that have been carried out previously.
Dynamic Analysis of the Symbiotic Model of Commensalism and Parasitism with Harvesting in Commensal Populations Nurmaini Puspitasari; Wuryansari Muharini Kusumawinahyu; Trisilowati Trisilowati
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 5, No 1 (2021): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v5i1.3893

Abstract

This article discussed about a dynamic analysis of the symbiotic model of commensalism and parasitism with harvesting in the commensal population. This model is obtained from a modification of the symbiosis commensalism model. This modification is by adding a new population, namely the parasite population. Furthermore, it will be investigated that the three populations can coexist. The analysis carried out includes the determination of all equilibrium points along with their existence and local stability along with their stability requirements. From this model, it is obtained eight equilibrium points, namely three population extinction points, two population extinction points, one population extinction point and three extinction points can coexist. Of the eight points, only two points are asymptotically stable if they meet certain conditions. Next, a numerical simulation will be performed to illustrate the model’s behavior. In this article, a numerical simulation was carried out using the RK-4 method. The simulation results obtained support the results of the dynamic analysis that has been done previously.
Dynamic Analysis of COVID-19 Model with Quarantine and Isolation Muhammad Abdurrahman Rois; Trisilowati Trisilowati; Ummu Habibah
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 5, No 2 (2021): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v5i2.5167

Abstract

This study discusses the dynamic analysis of the COVID-19 model with quarantine and isolation. The population in this model is divided into seven subpopulations: subpopulation of susceptible, exposed, asymptomatic, symptomatic, quarantine, isolated and recovered. Two equilibrium points were obtained based on the analysis results, namely the disease-free and endemic equilibrium points. The existence and local stability of the equilibrium point depends on the value of the basic reproduction number . Then, the point of disease-free equilibrium always exists, and the point of endemic equilibrium exists when it meets . The point of disease-free equilibrium is locally asymptotically stable when it satisfies  and the endemic equilibrium point is locally asymptotically stable with conditions. Furthermore, numerical simulations are carried out to determine the model's behavior using the fourth-order Runge-Kutta method. The numerical simulation obtained supports the dynamic analysis results. Finally, the graphical results are presented. The findings here suggest that human-to-human contact is a potential cause of the COVID-19 outbreak. Therefore, quarantine of susceptible and exposed subpopulations can reduce the risk of infection. Likewise, isolation of infected subpopulations can reduce the risk of spreading COVID-19.
Analisis Dinamik Model Hepatitis B dengan Sirosis Hati Muna Afdi Muniroh; Trisilowati Trisilowati; Wuryansari Muharini Kusumawinahyu
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.11060

Abstract

Hepatitis B adalah suatu penyakit peradangan pada organ hati yang memiliki dua fase infeksi yaitu akut dan kronis. Sirosis hati terjadi akibat terbentuknya jaringan parut pada individu hepatitis B berkepanjangan (kronis).  Oleh karena itu, pada penelitian ini dibentuk model penyebaran penyakit hepatitis B dengan sirosis hati. Selain itu, pada model diasumsikan virus hepatitis B (HBV) dapat ditularkan baik secara vertikal maupun horizontal. Analisis dinamik dilakukan untuk menentukan eksistensi dan kestabilan titik kesetimbangan. Berdasarkan hasil analisis dinamik, diperoleh dua titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Angka reproduksi dasar (R0) didapatkan dengan menggunakan matriks generasi selanjutnya. Titik kesetimbangan bebas penyakit eksis tanpa syarat, sedangkan titik kesetimbangan endemik eksis ketika R0>1. Hasil analisis kestabilan menunjukkan bahwa titik kesetimbangan bebas penyakit dan endemik bersifat stabil asimtotik lokal jika kriteria Routh-Hurwitz terpenuhi. Selain itu,  titik kesetimbangan bebas penyakit bersifat stabil asimtotik global jika R0<1 dan titik kesetimbangan endemik bersifat stabil asimtotik global jika memenuhi kondisi tertentu. Simulasi numerik mendukung hasil analisis yang telah diperoleh. 
Dynamics of a Fractional Order Eco-Epidemiological Model Kartika Nugraheni; Trisilowati Trisilowati; Agus Suryanto
Journal of Tropical Life Science Vol. 7 No. 3 (2017)
Publisher : Journal of Tropical Life Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/jtls.07.03.09

Abstract

In this paper, we propose a fractional order eco-epidemiological model. We considere the existence of time memory in the growth rate of the three populations. We observed the dynamical behaviour by analysing with fractional order and then simulateing using Grünwald-Letnikov approximation to support analytical results. It found that the model has five equilibrium points, namely the origin, the survival of susceptible prey, the predator free equilibria, the infected prey free equilibria, the interior equilibria. Numerical simulations show that the existence of fractional order  is a factor which affects the behaviour of solutions.Â