Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Limits: Journal of Mathematics and Its Applications

Analisis Dinamik pada Model Kanker Serviks dengan Vaksinasi dan Screening Kristanti, Karunia Theda; Trisilowati, Trisilowati; Widodo, Agus
Limits: Journal of Mathematics and Its Applications Vol 17, No 2 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v17i2.6901

Abstract

Pada paper ini dibahas analisis dinamik model penyebaran kanker serviks dengan melibatkan tindakan vaksinasi dan screening. Penyebab utama terjadinya kanker serviks adalah karena seseorang terinfeksi Human Papillomavirus (HPV). Infeksi ini dapat menular karena adanya kontak langsung melalui hubungan seksual antara subpopulasi wanita rentan dengan pria terinfeksi HPV maupun kontak langsung antara pria rentan dengan wanita terinfeksi HPV. Pada model ini diasumsikan vaksin diberikan pada subpopulasi wanita rentan saja dengan salah satu jenis vaksin. Sementara itu, screening dilakukan oleh subpopulasi wanita terifeksi HPV sebagai upaya deteksi dini untuk mencegah terjadinya kanker serviks. Hasil analisis dinamik menunjukkan bahwa model penyebaran kanker serviks dengan vaksinasi dan screening memiliki dua titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemi. Eksistensi dan kestabilan lokal titik kesetimbangan bergantung pada nilai angka reproduksi dasar R0. Berdasarkan hasil analisis, titik kesetimbangan bebas penyakit eksis tanpa syarat, sedangkan titik kesetimbangan endemi eksis jika R0>1. Titik kesetimbangan bebas penyakit bersifat stabil asimtotik lokal jika nilai R0<1 dan titik kesetimbangan endemi bersifat stabil asimtotik lokal jika memenuhi kriteria Routh-Hurwitz. Simulasi numerik yang dilakukan mendukung hasil analisis dinamik yang diperoleh. 
Analisis Dinamik Model Hepatitis B dengan Sirosis Hati Muna Afdi Muniroh; Trisilowati Trisilowati; Wuryansari Muharini Kusumawinahyu
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.11060

Abstract

Hepatitis B adalah suatu penyakit peradangan pada organ hati yang memiliki dua fase infeksi yaitu akut dan kronis. Sirosis hati terjadi akibat terbentuknya jaringan parut pada individu hepatitis B berkepanjangan (kronis).  Oleh karena itu, pada penelitian ini dibentuk model penyebaran penyakit hepatitis B dengan sirosis hati. Selain itu, pada model diasumsikan virus hepatitis B (HBV) dapat ditularkan baik secara vertikal maupun horizontal. Analisis dinamik dilakukan untuk menentukan eksistensi dan kestabilan titik kesetimbangan. Berdasarkan hasil analisis dinamik, diperoleh dua titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Angka reproduksi dasar (R0) didapatkan dengan menggunakan matriks generasi selanjutnya. Titik kesetimbangan bebas penyakit eksis tanpa syarat, sedangkan titik kesetimbangan endemik eksis ketika R0>1. Hasil analisis kestabilan menunjukkan bahwa titik kesetimbangan bebas penyakit dan endemik bersifat stabil asimtotik lokal jika kriteria Routh-Hurwitz terpenuhi. Selain itu,  titik kesetimbangan bebas penyakit bersifat stabil asimtotik global jika R0<1 dan titik kesetimbangan endemik bersifat stabil asimtotik global jika memenuhi kondisi tertentu. Simulasi numerik mendukung hasil analisis yang telah diperoleh.