Claim Missing Document
Check
Articles

Found 3 Documents
Search

The Empirical Comparison of Machine Learning Algorithm for the Class Imbalanced Problem in Conformational Epitope Prediction Binti Solihah; Azhari Azhari; Aina Musdholifah
JUITA : Jurnal Informatika JUITA Vol. 9 No. 1, May 2021
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (972.975 KB) | DOI: 10.30595/juita.v9i1.9969

Abstract

A conformational epitope is a part of a protein-based vaccine. It is challenging to identify using an experiment. A computational model is developed to support identification. However, the imbalance class is one of the constraints to achieving optimal performance on the conformational epitope B cell prediction. In this paper, we compare several conformational epitope B cell prediction models from non-ensemble and ensemble approaches. A sampling method from Random undersampling, SMOTE, and cluster-based undersampling is combined with a decision tree or SVM to build a non-ensemble model. A random forest model and several variants of the bagging method is used to construct the ensemble model. A 10-fold cross-validation method is used to validate the model.  The experiment results show that the combination of the cluster-based under-sampling and decision tree outperformed the other sampling method when combined with the non-ensemble and the ensemble method. This study provides a baseline to improve existing models for dealing with the class imbalance in the conformational epitope prediction.
An Application of Fuzzy Inference System by Clustering Subtractive Fuzzy Method for Estimating of Product Requirement Fajar Ibnu Tufeil; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 1, No 1 (2006): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.24

Abstract

Model fuzzy memiliki kemampuan untuk menjelaskan secara linguistik suatu sistem yang terlalu kompleks. Aturan-aturan dalam model fuzzy pada umumnya dibangun berdasarkan keahlian manusia dan pengetahuan heuristik dari sistem yang dimodelkan. Teknik ini selanjutnya dikembangkan menjadi teknik yang dapat mengidentifikasi aturan-aturan dari suatu basis data yang telah dikelompokkan berdasarkan persamaan strukturnya. Dalam hal ini metode pengelompokan fuzzy berfungsi untuk mencari kelompok-kelompok data. Informasi yang dihasilkan dari metode pengelompokan ini, yaitu informasi tentang pusat kelompok, digunakan untuk membentuk aturan-aturan dalam sistem penalaran fuzzy. Dalam skripsi ini dibahas mengenai penerapan fuzzy infereance system dengan metode pengelompokan fuzzy subtractive clustering, yaitu untuk membentuk sistem penalaran fuzzy dengan menggunakan model fuzzy Takagi-Sugeno orde satu. Selanjutnya, metode pengelompokan fuzzy subtractive clustering diterapkan dalam memodelkan masalah dibidang pemasaran, yaitu untuk memprediksi permintaan pasar terhadap suatu produk susu. Aplikasi ini dibangun menggunakan Borland Delphi 6.0. Dari hasil pengujian diperoleh tingkat error prediksi terkecil yaitu dengan Error Average 0.08%.
Metode Boost-K-means untuk Clustering Puskesmas berdasarkan Persentase Bayi yang Diimunisasi Ahmad Irfan Abdullah; Edi Winarko; Aina Musdholifah
JRST (Jurnal Riset Sains dan Teknologi) Volume 4 N0. 2 September 2020: JRST
Publisher : Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1261.459 KB) | DOI: 10.30595/jrst.v4i2.7546

Abstract

Dinas Kesehatan Kabupaten/Kota adalah satuan kerja pemerintahan daerah kabupaten/kota yang bertanggung jawab menyelenggarakan urusan pemerintahan dalam bidang kesehatan di kabupaten/kota. Pelayanan kesehatan adalah upaya yang diberikan oleh Puskesmas kepada masyarakat, mencakup perencanaan, pelaksanaan, evaluasi, pencatatan, pelaporan, dan dituangkan dalam suatu sistem. Pada penelitian ini, akan digunakan data persentase bayi yang diimunisasi yang merupakan salah satu layanan dari Puskesmas. Pelayanan imunisasi ini merupakan pelayanan imunisasi dasar meliputi BCG, DPT/HB1-3, polio 1-4 dan campak. Data persentase bayi yang diimunisasi belum memiliki pengelompokan sehingga pada penelitian ini akan diterapkan metode clustering untuk melakukan pengelompokan Puskesmas berdasarkan persentase bayi yang diimunisasi. Data persentase bayi dari masing-masing Puskesmas dijadikan data uji yang akan diterapkan pada proses multi-clustering dengan metode boost-clustering. Output dari penerapan metode ini akan dibandingkan dengan output metode clustering dasar k-means, hasil clustering akan diukur menggunakan metode silhouette index. Evaluasi menggunakan metode silhouette index dilakukan pada dataset puskesmas. Analisis dilakukan dengan melihat hasil evauasi dataset yang sudah diimplementasikan kedalam algoritma cluster dasar k-means dan algoritma multiclustering boost-k-means. Berdasarkan hasil evaluasi, diperoleh nilai silhouette index 0,798102756 untuk k-means dan 0,789901932 untuk boost-k-means, dengan ini algoritma yang diusulkan memiliki kualitas hasil clustering minimal sama atau lebih baik dari single clustering k-means dengan jumlah iterasi yang lebih sedikit