Andre Ditya Maulana Lubis
School of Pharmacy, Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Transient transformation of artemisinic aldehyde ∆ 11 (13) double bond reductase (dbr2) gene into Artemisia annua L. Elfahmi Elfahmi; Fany Mutia Cahyani; Andre Ditya Maulana Lubis; Tati Kristanti; Sony Suhandono
Indonesian Journal of Biotechnology Vol 21, No 2 (2016)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1326.152 KB) | DOI: 10.22146/ijbiotech.27956

Abstract

Global demand of antimalarial drug artemisinin has a gap with production capacity from existing sources since the low content of this compound from Artemia annua L. Genetic engineering-based strategy for A. annua plant on key enzymes in artemisinin biosynthetic pathway is needed. Artemisinic aldehyde ∆ 11 (13)  double bond reductase (dbr2) is one of the key enzyme on artemisinin biosynthesis which was studied in this research. Agrobacterium tumefaciens-mediated transformation of A. annua using dbr2 was carried out. Synthetic dbr2 was ligated into pCAMBIA1303 and transformed into Escherichia coli DH5α. pCAMBIA1303-dbr2 plasmid was transformed to A. tumefaciens AGL1. Leaves of  A. annua were infected by positive transformant of recombinant A. tumefaciens (OD600 ≈ 1) supplemented with acetosyringone 50 ppm, and Silwet S-408 0.02%. Samples were incubated in desiccators connected with vacuum pump, this method is called infiltration vacuum. Leaves were covered in dark for 45 min, and co-cultivated on MS co-cultivation media for 3 days. All leaves were washed in 300 ppm cefotaxime and divided into 2 parts; 3 leaves for GUS histochemical assay and 300 mg of leaves for HPLC analysis. Transient transformation was done in triplicate. In GUS histochemical assay, pCAMBIA1303 and pCAMBIA-dbr2 showed positive blue spot where coefficient of variance was less than 5%. PCR analysis for genomic DNA of transformed  A. annua showed a positive result of inserted dbr2 recombinant indicated by migration profile and direct sequencing analysis. It could be concluded that pCAMBIA-dbr2 construct and transformation into  A. annua have been successfully performed.