Mohd Iqbal Muttaqin
Program Studi Magister Matematika, Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimal tracking control in photovoltaic using linear quadratic tracking Mohd Iqbal Muttaqin; Said Munzir; Marwan Ramli; Muhammad Ikhwan
Journal of Aceh Physics Society Volume 11, Number 1, January 2022
Publisher : PSI-Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jacps.v11i1.20381

Abstract

Abstrak. Penelitian ini membahas tentang masalah penjejak pasif photovoltaic terhadap posisi matahari secara optimal. Penjejak pasif digunakan ketika penjejak aktif tidak berfungsi. Penjejak pasif menggunakan perhitungan matematika yang rumit untuk penerapannya. Metode yang digunakan pada penelitian ini adalah linear quadratic tracking. Linear quadratic tracking merupakan metode analitik yang mengkonstruksi sistem persamaan secara kontrol optimal. Penjejakan oleh linear quadratic tracking menghasilkan risetime, mencapai settling time, dan perhitungan error dari Mean absolute error (MAE). Artinya, metode linear quadratic tracking yang diterapkan pada PV dapat menjejak cahaya matahari secara pasif dengan sangat cepat dan akurat. Simulasi yang dilakukan terhadap massa panel surya yang bervariasi ternyata dapat mempengaruhi tegangan, arus listrik, dan kecepatan sudut dari PV. Semakin meningkat massa dari panel surya mengakibatkan tegangan dan arus listrik juga meningkat dan respon kecepatan sudut mencapai posisi referensi cenderung lama.  Abstract. This research discusses the problem of optimal passive photovoltaic tracking trajectory of the sun. The passive tracker is used when the active tracker does not work. The passive tracker uses complex mathematical calculations to implement it. The method used in this research is linear quadratic tracking. Linear quadratic tracking is an analytical method that constructs an optimal control system of equations. Tracing by linear quadratic produces rise time, reaches settling time, and error (MAE). This means that the linear quadratic tracking method for PV can track the sun trajectory very quickly and the level of accuracy is very accurate. Simulations carried out on various masses turned out to be able to affect the voltage, electric current, and angular velocity of the PV. The increasing mass of the solar panels results in increased voltage and electric current and the angular velocity response reaching the reference position tends to be longer.
Klasifikasi Berbasis Pembelajaran Mendalam pada Rontgen Dada TB dan Normal Menggunakan CNN Kustom dengan Pelatihan Minimal Epoch Muthi'ah, Zharifah; Oktalia Triananda Lovita; Mohd Iqbal Muttaqin
Jurnal Inotera Vol. 10 No. 2 (2025): July - December 2025
Publisher : LPPM Politeknik Aceh Selatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31572/inotera.Vol10.Iss2.2025.ID503

Abstract

Tuberculosis (TB) is a major global health concern and remains one of the deadliest infectious diseases, particularly in developing countries. Early and accurate diagnosis is crucial to initiate timely treatment, prevent complications, and reduce transmission rates. Conventional diagnostic methods, such as sputum tests and laboratory cultures, are often time-consuming and require specialized resources. Therefore, there is a growing need for automated, efficient, and accurate computer-aided diagnosis (CAD) systems. This study proposes a lightweight Convolutional Neural Network (CNN) architecture to classify chest X-ray images into TB and normal categories. The model is trained using the publicly available Shenzhen chest X-ray dataset, with three training durations: 10, 25, and 50 epochs. Although the model trained for 25 epochs achieved a slightly higher accuracy (86.36%) compared to the 10 epochs model (85.61%), the latter is considered more optimal due to its better balance between performance and efficiency. Specifically, the 10 epochs model produced high precision (92.86%) and a competitive F1-score (84.27%) while requiring significantly less training time and computational resources. Moreover, it maintained stable validation performance without signs of overfitting. In contrast, models trained for longer durations showed diminishing returns or performance degradation, particularly at 50 epochs. These results indicate that a shorter training cycle, when coupled with appropriate architectural design and regularization, can yield a robust and efficient classification model. This approach is particularly beneficial for deployment in resource-constrained environments, where rapid and reliable TB screening using chest X-ray images is critically needed.