Pudji Irasari
Research Center for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Jl. Sangkuriang Komplek LIPI Gedung 20 Lantai 2 Bandung, 40135

Published : 19 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 19 Documents
Search

Magnetic Simulation and Analysis of Radial Flux Permanent Magnet Generator using Finite Element Method Irasari, Pudji; Alam, Hilman Syaeful; Kasim, Muhammad
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1012.457 KB) | DOI: 10.14203/j.mev.2012.v3.23-30

Abstract

This paper discusses magnetic simulation and analysis of radial flux permanent magnet generator (PMG) using finite element method (FEM) by utilizing open source software FEMM 4.2. The specification of generator is 25 V, 28 A, 3 phase, 300 rpm. The analyzed magnetic flux was in the air gap, stator teeth and slots to find out the distribusian pattern and its fluctuation. The simulations were conducted in no-load and nominal load (28 A) conditions. Furthermore the maximum flux density of simulation (Bg(sim)) was used to calculate phase voltage Eph to find out the magnitude of generated electromotive force (EMF). The calculation results were presented as voltage vs. rotation graph in no-load condition and voltage vs. current graph in nominal load condition. Both graphs were validated with Eph of experiment result (Eph(exp)) and Eph that the value of Bg obtained from analytical calculation (Eph(calc)). The final results showed that in no-load condition, Eph graph with Bg(sim) (Eph(sim)) was close to Eph(exp) and Eph(calc). The error rate with respect to the experiment was 6,9%. In nominal load condition, Eph(sim) graph almost coincides with Eph(calc.) graph, with the voltage drop of both was 0,441 V. Both graphs however were far different from Eph(exp) graph, which has 9 V of voltage drop. The overall results demonstrated that magnetic distribution pattern presented by FEM was very helpful to avoid magnetic flux accumulation in a particular segment. Besides Bg(sim) facilitated to predict the value of Eph.
Experiment and Analysis of Car Alternator for Wind Turbine Application Irasari, Pudji
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 1 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (628.837 KB) | DOI: 10.14203/j.mev.2011.v2.1-10

Abstract

This paper discusses experiment and analysis to find out the feasibility of a car alternator to be used as a generator for wind turbine. The experiment was conducted twice. The first experiment was to characterize the alternator to determine the mechanical transmission ratio. In this experiment the alternator was driven by a lathe machine and its output power was supplied to charge a battery. In the second experiment the alternator was integrated with the turbine blades and they were tested as a unit system. In both experiments, the electric generation of alternator was executed with fixed excitation current method. The correlation between the alternator characteristic and the tip speed ratio gives the mechanical transmission ratio of 1 : 3. The experiment results show that the efficiency of alternator is around 50% and cut-in wind speed (after correction) is 6.35 m/s indicating that alternator is not feasible for wind turbine system application. 
Rotor-Dynamic Characteristic Evaluation of Interior Permanent Magnet Motor using Finite Element Method Alam, Hilman Syaeful; Irasari, Pudji
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 1 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (702.839 KB) | DOI: 10.14203/j.mev.2014.v5.1-8

Abstract

Dynamic characteristics of a critical speed of the rotor components at interior permanent magnet motor were evaluated using one-dimensional (1D) and three-dimensional (3D) finite element methods. Critical speed of the rotor wasinvestigated in the Campbell diagram, which shows the relationship between natural frequency and rotational velocity of the system when the motor is not in operation. The 1D finite element analysis shows that there are two modes which are close to the design frequency of 300 Hz i.e. mode 1 and 2. However the critical rotational velocity in both modes are still far above the maximum velocity design of 6,000 rpm. Validation using 3D finite element analysis demonstrated that all modes were still above the designed frequency and did not find any critical speed below 6,000 rpm. It can be concluded that the critical speed of the rotor of IPM motor is still outside the system resonance region, and can be operated safely.
Analytical and Numerical Deflection Study on the Structure of 10 kW Low Speed Permanent Magnet Generator Alam, Hilman Syaeful; Irasari, Pudji; Dewi, Dyah Kusuma
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (622.23 KB) | DOI: 10.14203/j.mev.2012.v3.87-94

Abstract

Analytical and numerical studies of the deflection in the structure of 10 kW low speed permanent magnet generator (PMG) have been discussed in this paper. This study is intended to prevent failure of the structure when the prototype is made. Numerical analysis was performed with the finite-element method (FEM). Flux density, weight and temperature of the components are the required input parameters. Deflection observed were the movements of the two main rotor components, namely the rim and shaft, where the maximum deflection allowed at the air gap between rotor and stator should be between 10% to 20% of the air gap clearance or 0.1000 mm to 0.2000 mm. Base on the analysis, total deflection of the analytic calculation was 0.0553 mm, and numerical simulation was 0.0314 mm. Both values were in the acceptable level because it was still below the maximum allowed deflection. These results indicate that the structure of a permanent magnet generator (rim and shaft) can be used safely.
Comparison of Unmodulated Current Control Characteristics of Permanent Magnet Synchronous Motor Muqorobin, Anwar; Irasari, Pudji; Taufik, Taufik
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 2 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1231.49 KB) | DOI: 10.14203/j.mev.2014.v5.115-122

Abstract

This paper discusses comparison of unmodulated current controls in PMSM, more specifically, on-off, sliding mode, predictive and hybrid controls. The purpose of this study is to select the most appropriate control technique to be adopted. The comparison method is preceded by modeling the motor and entering the values of the motor parameters. PI control is used for speed control and zero d-axis current is employed. Furthermore, performing simulation for each type ofthe selected current controls and analyzing their responses in terms of dq and abc currents, q-axis current response with step reference, as well as THD. Simulation results show that the on-off control gives the best overall performance based on its abc-axis current ripple and THD at large load torque. The hybrid control shows the best response occurring only at the fastest transient time of q-axis current but its response exhibits bad qualities compared with other controls. The predictive control yields the best responses offering the smallest d-axis ripple current and THD at small load torque condition. The sliding mode control, however, does not exhibit any prominent performance compared to the others. Results presented in this paper further indicate that for the PMSM used in the simulation the most appropriate control is the predictive control.
Torque Characteristic Analysis of Outer Rotor Permanent Magnet Generator for Low Head Hydro Power Application Irasari, Pudji; Hikmawan, Muhammad Fathul; Widiyanto, Puji
Jurnal IPTEK Vol 23, No 2 (2019)
Publisher : LPPM Institut Teknologi Adhi Tama Surabaya (ITATS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.iptek.2019.v23i2.524

Abstract

This paper analyzes the torque characteristics of outer rotor PMG for low head hydro power application. The aim is to prevent the generator torque from exceeding the turbine torque as the prime mover so that the system can work properly in both start and steady state conditions. The PMG is of outer rotor type and the torques are calculated analytically and numerically. The analysis is focused only on the PMG without connecting it to the turbine. Two analyzed torques include electromagnetic torque and starting torque, which comprises cogging torque, hysteresis torque and friction torque. The electromagnetic torque was obtained by loading the PMG with resistance and impedance (RL-LL in series) respectively. The results indicate that electromagnetic torque is the highest among all the investigated torques although its value is only 5.6% of the turbine torque, and cogging torque is the highest among the starting torque. From those results, it can be concluded that the hydro turbine torque can overcome the generator torque both at start and steady state conditions.
Thermal Analysis on Radial Flux Permanent Magnet Generator (PMG) using Finite Element Method Irasari, Pudji; Syaeful A, Hilman Syaeful A; Kasim, Muhammad
IPTEK The Journal for Technology and Science Vol 22, No 2 (2011)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v22i2.59

Abstract

The main source of heat in the permanent magnet generator (PMG) is the total losses which f come from winding losses, core losses and rotational losses. Total heat arising from such these losses must be properly distributed and maintained so as not to exceed the maximum allowable temperature to prevent damage to insulation on the winding and demagnetization on the permanent magnet machines. In this research, we consider thermal analysis which is occurred on the radial flux PMG by using finite element method to determine the extent to which the heat generated can be properly distributed. The simulation results show that there are no points of heat concentration or hot spot. The simulation maximum temperatures of the permanent magnet and the winding are 39.1oC and 72.5oC respectively while the experimental maximum temperature of the winding is 62oC.
Desain dan Simulasi GMP Fluks Aksial Berbasis Dimensi Magnet Permanen Komersil IRASARI, PUDJI; WIDIYANTO, PUJI; HIKMAWAN, MUHAMMAD FATHUL
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 3: Published September 2020
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i3.602

Abstract

ABSTRAKMakalah ini membahas desain dan simulasi generator magnet permanen fluks aksial 500 W, 220 V, 500 rpm, 1 fasa, stator tunggal tanpa inti besi lunak dan rotor ganda berbahan baja karbon. Tujuan studi adalah untuk mengetahui performa generator pada dua jenis pembebanan yaitu beban RL dan ZL. Metode perhitungan desain dilakukan secara analitik dan numerik menggunakan perangkat lunak FEMM 4.2 dengan berbasis pada dimensi magnet permanen komersil. Performa generator yang dianalisis meliputi tegangan terminal, daya keluaran dan efisiensi. Hasil simulasi menunjukkan bahwa ketika diberi beban RL, daya keluaran dan efisiensi generator lebih tinggi dibanding ketika diberi beban ZL. Grafik tegangan terminal dari kedua jenis pembebanan tersebut sebagian berimpit tetapi pada beban RL tingkat penurunannya lebih tajam disebabkan tegangan jatuhnya lebih besar. Dari semua hasil perhitungan dan simulasi, dapat disimpulkan bahwa generator menunjukkan performa yang baik pada kedua jenis pembebanan dengan efisiensi sekitar 80%.Kata kunci: generator, magnet permanen, fluks aksial, stator tunggal, rotor ganda ABSTRACTThis paper discusses the design and simulation of 500 W, 220 V, 500 rpm axial flux permanent magnet generators, with the construction of coreless, single stator, and double rotor made of carbon steel. This study aims to find out the performance of the generators in two types of loadings, namely RL and ZL loads. The design calculation method is done analytically and numerically using FEMM 4.2 software based on the dimensions of commercial permanent magnets. The generator performances analyzed include the terminal voltage, the output power, and the efficiency. From the simulation results, it is known that under load RL, the output power and efficiency are higher than under load ZL. The terminal voltage graphs of the two types of loadings partially coincide but at the RL load, the rate of the decline is sharper due to the greater voltage drop. From all the results, it can be concluded that the generator shows good performance on both types of loads with a quite high efficiency, which is around 80%.Keywords: generator, permanent magnet, axial flux, single stator, double rotor
Permanent magnet generator performance comparison under different topologies and capacities Wirtayasa, Ketut; Kasim, Muhammad; Widiyanto, Puji; Muqorobin, Anwar; Wijanarko, Sulistyo; Irasari, Pudji
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1516-1527

Abstract

This paper compares the magnetic, electrical, and mechanical characteristics of two permanent magnet generator topologies: single-gap axial flux and single-gap inner rotor radial flux. The study aims to identify how the key parameters fluctuate at each power capacity and investigate the trends in their values as power changes. The power capacities observed are 300 W, 600 W, 900 W, 1200 W, and 1500 W. Simulations used with the help of Ansys Maxwell software to obtain: i) magnetic characteristics without load, including air gap flux density, flux linkage, and induced voltage, ii) electrical performance, consisting of armature current, terminal voltage, voltage regulation, total harmonic distortion, core loss and output power, and iii) mechanical performance, including shaft torque and cogging torque. The last step compares the power density of both topologies. The simulation results show that the axial flux permanent magnet generator (AFPMG) has better air gap flux density, voltage regulation, total harmonic distortion (THD), efficiency, electromagnetic torque, and power density characteristics. Meanwhile, the radial flux permanent magnet generator (RFPMG) is superior in induced voltage and output power. These results conclude that, in general, AFPMG is exceptional from a technical point of view and is more economical when applied to hydro or wind energy systems.