Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Indonesian Journal on Computing (Indo-JC)

Performansi Implementasi Numerik Metode Pseudo Spectral pada Model Gelombang 1D Boussinesq Didit Adytia
Indonesia Journal on Computing (Indo-JC) Vol. 2 No. 1 (2017): Maret, 2017
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2017.2.1.164

Abstract

In the design of a numerical wave tank, it is necessary to use an accurate wave model as well as to choose an accurate and efficient numerical scheme for implementing the model. In this paper, we use a Pseudo-Spectral (PS) implementationfor a wave model so called Variational Boussinesq Model. The implementation is aimed to obtain a higher time efficiency in the calculation of wave simulations. The performance  of the PS implementation  is compared in CPU-time with a Finite Element (FE) implementation of the wave model for simulating a focusing wave group. Results of both implementations give a good agreement with wave data from laboratory experiment. The PS-implementation gives more efficient CPU-time compared to the FE-implementation.
Momentum Conservative Scheme for Simulating Wave Runup and Underwater Landslide Didit Adytia
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 1 (2019): Maret, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2019.4.1.250

Abstract

This paper focuses on the numerical modelling and simulation of tsunami waves triggered by an underwater landslide. The equation of motion for water waves is represented by the Nonlinear Shallow Water Equations (NSWE). Meanwhile, the motion of underwater landslide is modeled by incorporating a term for bottom motion into the NSWE. The model is solved numerically by using a finite volume method with a momentum conservative staggered grid scheme that is proposed by Stelling & Duinmeijer 2003 [12].  Here, we modify the scheme for the implementation of bottom motion. The accuracy of the implementation for representing wave runup and rundown is shown by performing the runup of harmonic wave as proposed by Carrier & Greenspan 1958 [2], and also solitary wave runup of Synolakis, 1986 [14], for both breaking and non-breaking cases. For the underwater landslide, result of the simulation is compared with simulation using the Boundary Integral Equation Model (BIEM) that is performed by Lynett and Liu, 2002 [9].
Numerical Simulation of Soliton Collision by using 1D Boussinesq Model Didit Adytia; Four Saputra BM
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 2 (2019): September, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.2.335

Abstract

Soliton or solitary wave is a physical phenomenon in which a wave propagates without changing of form in a dispersive media. It is a condition when effects of nonlinearity is balanced with effects of dispersion. Therefore solitary wave propagation is a standard test for testing nonlinearity and dispersiveness of a wave model and its numerical implementation. One interesting case of the soliton phenomenon is the soliton collision which is an interaction between two solitary waves facing each other and producing a high impact wave. The phenomenon can be used to study tsunami wave interactions. In this paper we study the phenomenon by using numerical approach. We use a nonlinear dispersive 1D Boussinesq model that is implemented numerically by using Finite Element implementation in a collocated grid. The accuracy of the implementation is test by simulating two test cases of solitary wave, i.e. the propagation of solitary wave againsts analytical soliton solusion of Korteweg-de Vries (KdV) and the collision of two identical solitary waves. Results of simulations are also compared with results of the nonlinear nondispersive Shallow Water Equations (SWE).
Performansi Implementasi Paralel OpenMP pada Persamaan Air Dangkal 2D untuk Simulasi Gelombang Runup Didit Adytia; Novalianda Jeriano
Indonesia Journal on Computing (Indo-JC) Vol. 5 No. 1 (2020): Maret, 2020
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2020.5.1.395

Abstract

Terdapat banyak aliran dangkal di alam seperti tsunami, aliran banjir, aliran pada sungai, pasang surut air laut, dan sebagainya. Aliran dangkal dapat disimulasikan dengan menggunakan Persamaan Air Dangkal atau Shallow Water Equations (SWE). Salah satu fenomena nonlinear yang penting dalam aliran dangkal adalah fenomena runup. Khususnya untuk menyimulasikan fenomena runup secara akurat, perlakuan khusus pada implementasi numerik dari model gelombang harus dilakukan. Pada artikel ini, persamaan SWE diimplementasikan dengan metode Finite Volume pada grid komputasi dengan model momentum conservative staggered grid. Untuk meningkatkan performasi komputasi terutama untuk menyimulasikan domain komputasi yang besar dengan resolusi grid tinggi, pada paper ini skema numerik tersebut diimplementasikan dengan metode arsitektur OpenMP. Performansi algoritma paralel dikuantifikasi dengan menghitung speedup dan efisiensi. Dari hasil paralelisasi tersebut, didapatkan efisiensi pada waktu komputasi untuk kasus-kasus dengan jumlah grid komputasi yang besar.