Tri Wahyu Supardi
Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Hybrid Power Method For Power Supply Of Public Service Computer Tri Wahyu Supardi; Agus Harjoko
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 8, No 2 (2018): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.943 KB) | DOI: 10.22146/ijeis.16774

Abstract

Public services require computer-based electricity supply. Not continuous electricity supply in some areas led to a power supply from an alternative power source becomes indispensable. One alternative power source is a solar cell. Solar cell is a sustainable source of electricity but power output is not constant depending on the sunlight. The power source is needed to anticipate the lack of power when the power generated by the solar cell is not enough.In this paper proposed a hybrid design that combines the power supply of electricity from the solar cell, the network provider of electricity, and batteries. This paper discusses methods of hybrid electric power from three sources. Hybrid power is usually done by PCC (Power Controlled Converter), which consists of a controlled power converter for each channel input, but in this study the method proposed hybrid power input specification in the form of a synchronization circuit PCC then replaced by a diode circuit.The design of hybrid power supply in this study resulted in the specification input from the solar cell with Vmp channels (maximum power voltage) 35VDC Voc (open circuit voltage) 43.78VDC, channels of electricity provider with the already converted with SMPS (Switched Mode Power Supply) to 35VDC, and channels of a battery with a minimum voltage of 21VDC maximum 27.6VDC. The test results showed that the implementation of the proposed hybrid method can perform a single capture or hybrid power, and can transfer power between the source retrieval without pause. Implementation of the proposed hybrid method has a 21VDC output voltage range - 43.78VDC and efficiency of 98.6% - 99.5%.
Klasifikasi Tingkat Kemurnian Bahan Bakar Minyak Berdasarkan Cepat Rambat Gelombang Menggunakan Algoritma K-Nearest Neighbor Rangga Pujianto Wijaya; Abdul Rouf; Tri Wahyu Supardi
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 9, No 2 (2019): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (655.498 KB) | DOI: 10.22146/ijeis.49660

Abstract

The need for fuel oil has increased along with the increase of population, the number of vehicles and industries. An increase in demand for fuel oil is used by some people to make a profit by selling mixed fuel oil at the same price as the price set by the government. The purpose of this study is to create a prototype device that can characterize the type of fuel oil and create a classification system to determine the level of fuel purity with 40 kHz ultrasonic waves based on the parameters of wave velocity using the K-Nearest Neighbor (KNN) algorithm.This device works by using a 40 kHz ultrasonic wave that is connected to an ultrasonic transmitter. The propagated wave will be received by the ultrasonic receiver. The wave received by the receiver will be amplified and connected to the comparator circuit so that it can be processed by a microcontroller. Data obtained using this tool are wave travel time, wave velocity, density, and attenuation. The data used for classification systems using the KNN algorithm is wave velocity.Classification using the KNN algorithm can identify the level of fuel purity based on the parameters of the wave velocity obtained from ultrasonic wave gauges with an accuracy of 72.50%. Wave velocity which is measured using ultrasonic waves is directly proportional to the actual speed with the largest percentage of deviations that is 0.34%.
Perancangan dan Pembuatan Data Acquisition Device Sebagai Sistem Akuisisi Data untuk Kendali Mobil Formula Student Leonard Fidelcristo Supit; Tri Wahyu supardi; Triyogatama Wahyu Widodo
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 13, No 1 (2023): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.83395

Abstract

Data Acquisition Device (DAQ) is an electronic component used in formula student vehicles. To optimize the performance of the formula student vehicle and its driver, it is necessary to analyze and monitor the data acquisition system. Parameters acquired on the car include the position of the brake pedal/throttole and wheel speed.DAQ system has 5 input channels namely 3 analog input pins and 2 digital input pins, and 3 output channels, which is the controller pin, fault pin, and brake light pin. The DAQ system in this research is designed and made using Teensy 3.6, a signal conditioning circuit consisting of an RC low pass filter, voltage follower, non-inverting amplifier, and logic level shifter. DAQ system uses CANBUS to read and process sensor data.             DAQ system can acquire data from the KTC Linear Motion Position sensor PZ-12-A-50P with an accuracy value of 99,91%; Hall-effect Rotary Position sensor RTY120LVNAX with an accuracy value of 99,94% for both the first and second sensors; and Proximity sensor LJ12A3-4-Z/BX with an accuracy value of 99,58% for the first sensor and 99,46% for the second sensor. DAQ is able to run controller signal processing, detect faults, and activate brake light signal according to FSAE rules.
Penerapan Kawat Litz Pada Motor BLDC Untuk Peningkatan Gaya Dorong Per Daya Muhammad Syauqi Firdausi; Tri Wahyu Supardi; Roghib Muhammad Hujja
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 13, No 2 (2023): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.85066

Abstract

Copper loss can cause a decrease in performance in BLDC motors, so efforts will be made to reduce copper loss by using Litz wire. Additionally, there have been studies that simulate the performance of Litz wire, but they have not been directly applied, especially to propeller thrust. The objective of this research is to implement Litz wire in a BLDC motor and analyze its performance for an increase in propeller thrust per power. The BLDC motor is wound with single wire and Litz wire. The analysis conducted compares the resistance, copper loss, thrust force, and thrust-to-power ratio of the single wire and Litz wire with the same wire cross-sectional area. The BLDC motor is equipped with a propeller to measure the thrust force. The average resistance of the single wire is 0.43 Ohms, while the Litz wire is 0.38 Ohms. The copper loss of the Litz wire is 7% lower than a single wire. The Litz wire exhibits a 3% improvement in thrust force compared to the single wire in the testing. The thrust-to-power ratio of the Litz wire is also 3% better during the testing.