Roghib Muhammad Hujja
Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Pengembangan Sistem Ground Control Station Berbasis Internet Webserver pada Pesawat Tanpa Awak Fredy Aga Nugroho; Raden Sumiharto; Roghib Muhammad Hujja
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 8, No 1 (2018): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (370.352 KB) | DOI: 10.22146/ijeis.30126

Abstract

In unmanned aerial operations, the ground control station duties as a monitoring and command station so that operators on land can send mission orders, monitor the mission's course and monitor the condition of the UAV during the mission. It is necessary to have a GCS system capable of connecting with UAV that not limited with control transmitter range.This research develops GCS system using internet network and web server based. the system consists of two units, namely flying units and GCS units. The flying unit consists of Raspberry pi, modem, webcam, ADAHRS module and quadrotor with MultiWii controller. on the GCS unit consists of Raspberry pi connected on the internet network with 10Mbps download speed and 1.5Mbps upload.The GCS system can display aircraft conditions, stream video and perform command controls. Configure streaming video for delay time of no more than one second with 240x144 pixel resolution, 256kbps maximum bitrate and 5 fps framerate. This configuration runs at a 1.1 Mbps upload speed with a percentage of 93.83% bitrate compression. Aircraft condition data sent to GCS is optimal if internet bandwidth exceeds the bitrate of streaming video used on the system
Analisis Penempatan Node Sensor Terhadap Jarak Pengambilan Data Pada Media Tanah Rahman Faisal; Roghib Muhammad Hujja
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 9, No 1 (2019): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.503 KB) | DOI: 10.22146/ijeis.41017

Abstract

Badan Nasional Penanggulangan Bencana (BNPB) describes the number of casualties, property and environment resulting from landslides. Wireless sensor network technology can minimize the loss of life, property and environment [1, 2]. Wireless sensor networks are prone to interference, especially in data transmission. Transmission of wireless sensor data can be disrupted if material is blocked. Slides that are easily landslide in Indonesia consist mainly of soil material [3]. Soil is one material that can interfere with wireless sensor data transmission and is influenced by aspects such as temperature, weather, soil composition, soil moisture, and soil homogeneity [4, 5]. This study focuses on analyzing the effect of sensor node placement on data transmission distance on WiFi-based soil material. The results of the analysis of the placement of sensor nodes planted in the ground resulted in an average percentage attenuation of signal strength every 5 cm depth increase in soil material was 4.90%.
Klasifikasi Gerakan Jari Tangan Berdasarkan Sinyal Electromyogram Pada Lengan Catur Atmaji; Yusuf Waraqa Santoso; Roghib Muhammad Hujja; Andi Dharmawan; Danang Lelono
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 11, No 1 (2021): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.60741

Abstract

An electromyogram is a recording of muscle activity. These signals have been used both for medical diagnosis and engineering such as finger motion detection in healthy people and rehabilitation patients. Many studies have been conducted to map the relationship between electromyogram and finger movements, one of which is the relationship between the number of channels used and the complexity of the system. The number of channels used is directly proportional to the complexity of a system. The more complex the system, the heavier the data processing is so that it requires greater resources. Therefore, this study focuses on the construction of a classification system for human finger movements using fewer channels. The number of channels used in this study is 4. Root Mean Square is applied in a sliding window as feature extraction. The classifier used is the artificial neural network. System validation is done with 10-fold cross-validation. The test results of the average accuracy value for the thumb, index finger, middle finger, ring finger, little finger, grip, and relaxation were 89%, 90%, 93%, 95%, 93%, 94%, and 91% respectively which can be said to be quite good considering the number of channels relatively few compared to previous studies.
Sistem Pemantauan Pertumbuhan Anggrek Berdasarkan Pengolahan Citra Digital Magnolia Gina Ro'fataka Satriorini; Raden Sumiharto; Roghib Muhammad Hujja
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 12, No 2 (2022): Oktober
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.77893

Abstract

Growth monitoring and plant protectionis the major aspect of horticulture because its productivity depends on the health of the plants. Manual direct measurement methods tend to be destructive  towards  observed  plants. In  this  research,  a  smart  non-contact  growth  monitoring system was implemented on a chamber with orchid plants asthe objectsobserved. The images of  the  orchids  were  taken  and  became  the  input  of  the  system  to  be  processed  to  estimate  the height of the plants.The contour of the orchid plant as the object was obtained and the height was calculated based on the highest and the lowest contour.The result shows that the developed system is proven to be capable of measuring orchid’s height in real-time  with  accuracy  more than  95,7%.  Thus,  this  system will  effectively  help  farmers  to improve  the  quality  and  the quantity of the plant’s productivity.
Rancang Bangun Sistem Deteksi Posisi Objek dalam Rumah dengan Metode Support Vector Machine Berdasar Kekuatan Sinyal Wi-Fi Damar Buana Murti; Danang Lelono; Roghib Muhammad Hujja
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 13, No 1 (2023): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.80736

Abstract

 Indoor Positioning System (IPS) is an object tracking technology that utilizes networks such as Wireless Fidelity (Wi-Fi) to determine the location of an object. IPS is closely related to the implementation of the Internet of Things (IoT) to carry out an order in a smart home. However, the weakness of IPS is the attenuation of the signal received when the tag or target moves to a room that borders another room, causing errors in tracking. The IPS implementation will be carried out based on the 2.4 GHz Wi-Fi signal emitted from the ESP32.The research will use the trilateration method which requires three sink nodes to receive signal strength, then a machine learning algorithm, namely Support Vector Machine (SVM), to classify rooms in three different scenarios, namely when the target is stationary, moving between rooms, and is on the edge room adjacent to another room.The results of the test show that the three scenarios provide different levels of accuracy. The accuracy of the system on the target scenario while still in the room reaches 100%, on the target moving room scenario reaches 86.15%, and on the target scenario that is at the edge of the room adjacent to another room reaches 80%.
Penerapan Kawat Litz Pada Motor BLDC Untuk Peningkatan Gaya Dorong Per Daya Muhammad Syauqi Firdausi; Tri Wahyu Supardi; Roghib Muhammad Hujja
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) Vol 13, No 2 (2023): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijeis.85066

Abstract

Copper loss can cause a decrease in performance in BLDC motors, so efforts will be made to reduce copper loss by using Litz wire. Additionally, there have been studies that simulate the performance of Litz wire, but they have not been directly applied, especially to propeller thrust. The objective of this research is to implement Litz wire in a BLDC motor and analyze its performance for an increase in propeller thrust per power. The BLDC motor is wound with single wire and Litz wire. The analysis conducted compares the resistance, copper loss, thrust force, and thrust-to-power ratio of the single wire and Litz wire with the same wire cross-sectional area. The BLDC motor is equipped with a propeller to measure the thrust force. The average resistance of the single wire is 0.43 Ohms, while the Litz wire is 0.38 Ohms. The copper loss of the Litz wire is 7% lower than a single wire. The Litz wire exhibits a 3% improvement in thrust force compared to the single wire in the testing. The thrust-to-power ratio of the Litz wire is also 3% better during the testing.