Claim Missing Document
Check
Articles

Found 4 Documents
Search

The Initiation Of Hayam Wuruk Motif Batik In Brafos Community Of Sumberwangi Hamlet Ub Forest Malang Danang Ariyanto; Sihabudin Sihabudin; Ni Wayan Surya Wardhani; Moh. Fadli; Romi Setiawan; Dian Cahya Rini
Journal of Innovation and Applied Technology Vol 8, No 1 (2022)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jiat.2022.008.01.11

Abstract

Batik merupakan produk kerajinan asli khas Indonesia yang berupa kain sebagai bahan baku pakaian dan telah dikenal dunia. Pada tahun 2021 melalui program Doktor Mengabdi, Batara berhasil menciptakan motif hayam wuruk. Hayam Wuruk merupakan raja ke-4 Kerajaan Majapahit, bersama mahapatih Gajahmada. Prabu Hayam Wuruk membawa majapahit mencapai masa kejayaan termasuk menyatukan sebagian besar wilayah nusantara. Pada tahap penciptaan motif utama batik hayam wuruk, proses stilisasi  bentuk menjadi sangat penting karena pada hakikatnya motif batik adalah penyederhanaan bentuk dan simbolis, tanpa meninggalkan kaidah artistik dan estetikanya. Eksplorasi bentuk motif utama didapatkan dari bentuk stilisasi surya majapahit, kawung kembang papat dan nyala api. Tim Doktor mengabdi mencoba mengaplikasikan motif hayam wuruk yang sudah dibuat dengan menggunakan cap batik dengan tujuan percepatan produksi batik. Pengaplikasian motif batik kawung kencana wungu ini dengan memberdayakan warga Dusun Sumberwangi untuk meningkatkan ketrampilan para pengrajin batik yang masih tergolong baru.
Perbandingan Akurasi Peramalan Curah Hujan dengan menggunakan ARIMA, Hybrid ARIMA-NN, dan FFNN di Kabupaten Malang Bestari Archita Safitri; Atiek Iriany; Ni Wayan Surya Wardhani
Seminar Nasional Official Statistics Vol 2021 No 1 (2021): Seminar Nasional Official Statistics 2021
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.827 KB) | DOI: 10.34123/semnasoffstat.v2021i1.853

Abstract

Time series analysis is an observation that is built on time sequences. Time series analysis is useful in various fields, especially meteorology. One aspect of meteorology is rainfall, which can have an impact on human life. Rainfall has a complicated pattern to predict, so we need the best method for forecasting rainfall. There are several methods that can analyze the intensity of rainfall. Methods that can be used to predict rainfall are ARIMA method, Feed Forward Neural Network (FFNN) method, and hybrid ARIMA-NN. This study aims to obtain the best rainfall modeling and prediction based on the three methods above. The rainfall data used came from the Mini Weather Station (MWS) at Supiturang and Manggisari hamlets. Based on the results of the study, at Supiturang, the best model was ARIMA(1,1,1) with RMSE of 3.4326. At Manggisari, the best model is Hybrid ARIMA(1,1,1) FFNN(4-9-1) with RMSE of 3.1056.
Bayesian Generalized Poisson Regression Modeling for Overdispersed Maternal Mortality Data Dewi Ratnasari Wijaya; Henny Pramoedyo; Ni Wayan Surya Wardhani
Advance Sustainable Science Engineering and Technology Vol. 7 No. 3 (2025): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v7i3.1928

Abstract

Maternal mortality is a global health issue that reflects disparities in access to and the quality of healthcare services. This study applies the Bayesian Generalized Poisson Regression (BGPR) approach to address the problem of overdispersion in the data, which renders the standard Poisson regression model less appropriate. The Generalized Poisson model was chosen for its ability to handle overdispersion, while the Bayesian approach provides more stable parameter estimates, particularly when working with small sample sizes. The analysis results show that all independent variables have a statistically significant effect on maternal mortality. In addition, the BGPR model yields a lower Bayesian Information Criterion (BIC) value compared to the standard Poisson model, indicating better model performance. The BGPR model helps identify the key factors that truly contribute to maternal mortality, making the results useful for local governments or health institutions in setting priorities for intervention.
Automatic Detection of Cabbage Pest Attacks Based on Leaf Images with Machine Learning Approach Ni Wayan Surya Wardhani; Prayudi Lestantyo; Atiek Iriany; Nur Silviyah Rahmi
International Journal of Informatics Engineering and Computing Vol. 2 No. 2 (2025): International Journal of Informatics Engineering and Computing [Preview]
Publisher : ASTEEC

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70687/3szcd282

Abstract

Farmers in cabbage farming face many problems, one of which is pest attack. Plutella xylostella L. is a major pest on cabbage (known as cabbage leaf caterpillar) which can cause a decrease in production of up to 100 percent. Decision Support System (DSS) was developed to classify the attack rate of Plutella to reduce the negative effects of using various types of high doses of pesticides and short spraying intervals but causing residual effects and killing natural enemies. DSS has a role in helping farmers to make decisions regarding the time of pesticide treatment needed to minimize negative effects and increase productivity. In this study, DSS was developed to detect damage to cabbage (Brassica oleracea L) crops so that farmers can determine pesticide doses and spraying intervals based on a website. The results of the system is presented in the form of images and the percentage of damage to cabbage plants. Therefore, the CART method can be used to analyze the level of damage to plants that are attacked by pests.