Claim Missing Document
Check
Articles

Found 2 Documents
Search

DNA Condensation Study of Fully Synthesized Lipopeptide-Based Transfection Agent for Gene Delivery Vehicle Tarwadi, Tarwadi; Rachmawati, Heni; Kartasasmita, Rahmana E.; Pambudi, Sabar; Arbianto, Alfan Danny; Restiani, Dewi Esti; Asyarie, Sukmadjaja
ANNALES BOGORIENSES Vol 22, No 2 (2018): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (445.168 KB) | DOI: 10.14203/ann.bogor.2018.v22.n2.65-74

Abstract

   The main requirement of transfection agent has to condense DNA in nanoparticle size, protect the DNA from nucleases and other degrading enzymes during its transport in cell cytoplasm and nucleus and should not toxic to target cells. In this research, lipopeptide composed of palmitoyl (C-16) and short peptide sequence have been designed fully synthesized and tested to DNA condensation capability and toxicity. The DNA condensation study was performed using EtBr exclusion assay and cytotoxicity determination was carried out by colorimetric MTT assay. It was revealed that lipopeptide-based transfection agent of Pal-CKKHH and Pal-CKKHH-YGRKKRRQRRR-PKKKRKV condensed DNA molecules efficiently. The lipopeptide was less toxic compared to Lipofectamine and Poly-L-Lysine, that shown by 90% of CHO-K1 cells remained viable when they were treated with 4.36 µM Pal-CKKHHYGRKKRRQRRR-PKKKRKV. Meanwhile, there were only ~75% and 80% of CHO-K1 viable cells when it was treated with PLL and Lipofectamine®2000, respectively. Moreover, cell viability of HepG2 was ~ 75% after treated with 2.18 µM of Pal-CKKHH-YGRKKRRQRRR-PKKKRKV and decreased to ~65% when the lipopeptide concentration increased to 8.72 M. In summary, the synthesized lipopeptide condenses DNA molecules efficiently, less toxic than Lipofectamine®2000 and PLL and has possibility to be explored as a non-viral gene delivery vehicle.
MOLECULAR MODELING OF CATIONIC PORPHYRINS AS LIGAD OF RADIOPHARMACEUTICAL KIT Ni Made Pitri Susanti; Rahmana E. Kartasasmita; Amir Musadad; Daryono H. Tjahjono
Jurnal Kimia (Journal of Chemistry) Vol. 5, No. 1 Januari 2011
Publisher : Program Studi Kimia, FMIPA, Universitas Udayana (Program of Study in Chemistry, Faculty of Mathematics and Natural Sciences, Udayana University), Bali, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (536.172 KB)

Abstract

Cationic porphyrins and their interactions with DNA have become an important concern due to its role as a photosensitizer in photodynamic therapy for cancer treatment. However, this therapy technique has the disadvantage, i.e. its inability to document photographically the fluorescence observed endoscopically. The present research aims to observe the change in molecular level of cationic porphyrins which labeled by radionuclides emitting ? particle and ? radiation. Molecular models of 5,10,15,20-tetrakis-[3.4-bis (carboxymetylenoxy) imidazoliumyl] porphyrin (T3,4BCImP), 5,10,15,20-tetrakis-[3,4-bis (carboxymetylenoxy) pirazoliumyl] porphyrin (T3,4BCPzP) and its complexes which labeled by Tc and Re radionuclides were optimized and calulated by density functional theory methods (DFT). Atomic charges were calculated with natural population analysis/NPA method. The calculation result showed that Tc-T3,4BCPzP has the highest photosensitivity and the strongest affinity to DNA. Carboxylate groups of meso-subtituent of porhyrins lead to label cationic porphyrins by Tc and Re as radiopharmaceutical ligand candidates .