Ahmed Mohammed Ahmed
University of Diyala

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Wireless transceiver bit error rate and capacity improvement using advanced decoding techniques Ahmed Mohammed Ahmed; Wurod Qasim Mohamed; Israa Hazem Ali
Bulletin of Electrical Engineering and Informatics Vol 11, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i3.3381

Abstract

This paper considers advanced techniques for multiple-input multiple-output (MIMO) detection and decoding techniques to improve bit error rate (BER) and channel capacity. These are requirements for sixth generation (6G) (the next generation) access networks. A parallel decoding and detection scheme and a soft bit decoding scheme are implemented meregely to boost the overall performance of MIMO communication systems. The proposed new system is called the advanced system which comprises the two mentioned advanced techniques of decoding. For simplicity, these advanced techniques are employed and developed using two antennas at both ends, transmitter, and receiver. Then it is compared with the other different techniques which are spatial multiplexing SM–sequential decoding zero forcing-interference cancelation (ZF-IC) technique and SM–parallel decoding technique. We show that the advanced system outperforms the other two mentioned systems by achieving ultra-reliability and a high capacity simultaneously without employing space time coding and error control coding techniques. Additionally, better BER performance is achieved with less resolution and the quantization error reduced with an increasing the resolution. The new advanced system is simulated and evaluated with three terms, channel capacity, BER, and quantization error.
Design and simulation double Ku-band Vivaldi antenna Huda Ibrahim Hamd; Israa Hazem Ali; Ahmed Mohammed Ahmed
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp396-403

Abstract

Due to the tremendous development in the field of wireless communication and its use in several fields, whether military or commercial was proposed. A novel tapered slot Vivaldi antenna is designed and simulated at double band frequency (Ku-band) using computer simulation technology (CST) software 2020. The dimensions of the antenna are 2.3 × 1 × 0.4 mm3 with a microstrip feed of 0.5 mm. The proposed antenna is improved by cutting a number of circle shapes on the patch layer in different positions. The simulation results are divided into more sections according to the number of circle shapes cutting. The results are good acceptance and make the improved Vivaldi antenna valuable in many future wireless communication applications.