Huda Ibrahim Hamd
University of Diyala

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design and simulation double Ku-band Vivaldi antenna Huda Ibrahim Hamd; Israa Hazem Ali; Ahmed Mohammed Ahmed
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp396-403

Abstract

Due to the tremendous development in the field of wireless communication and its use in several fields, whether military or commercial was proposed. A novel tapered slot Vivaldi antenna is designed and simulated at double band frequency (Ku-band) using computer simulation technology (CST) software 2020. The dimensions of the antenna are 2.3 × 1 × 0.4 mm3 with a microstrip feed of 0.5 mm. The proposed antenna is improved by cutting a number of circle shapes on the patch layer in different positions. The simulation results are divided into more sections according to the number of circle shapes cutting. The results are good acceptance and make the improved Vivaldi antenna valuable in many future wireless communication applications.
Radiation effect of M-slot patch antenna for wireless application Yousif Allbadi; Huda Ibrahim Hamd; Ilham H. Qaddoori
Bulletin of Electrical Engineering and Informatics Vol 11, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i5.3801

Abstract

Today, the specific absorption rate has become an important and necessary measurement when designing and implementing any type of antenna. In recent years, various devices have appeared that use different frequencies for wireless communication systems, which are a source of electromagnetic radiation. The M-slot antenna is designed in this paper to operate in multi-band frequencies for wireless communications using computer simulation technology (CST) software 2020. The radiation effect for this antenna is calculated for tissue mass of the human fingertips, which consists of three layers (skin, meat, and bone), over a mass of 1 g and 10 g according to the IEEE and International Commission on Non-Ionizing Radiation Protection (ICNIRP) organization. The results are shown three applications in the communication system, which are Wi-Fi, worldwide interoperability for microwave access (Wi-Max) and, satellite X-band and, the value of specific absorption rate (SAR) increase with increased frequency.