Claim Missing Document
Check
Articles

Found 4 Documents
Search

Kuat Tekan Vertikal Dinding Panel Beton Expanded Polystyrene dengan Perkuatan Papan Kalsium Silikat dan Penyambung Geser Baut Bella Lutfiani Al Zakina; Ashar Saputra; Ali Awaludin
Semesta Teknika Vol 22, No 2 (2019): NOVEMBER 2019
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.222248

Abstract

Perlunya percepatan penyediaan rumah tinggal mengharuskan pemerintah mencoba sistem konstruksi inovatif menggunakan sistem beton sandwich polystyrene yang digunakan sebagai konstruksi dinding. Konstruksi ini memiliki kelebihan seperti memiliki bobot yang relatif lebih ringan, harga yang relatif lebih ekonomis, dan kemudahan serta kecepatan konstruksi. Konstruksi ini diharapkan dapat mengurangi risiko kerusakan akibat gempa bumi karena memiliki bobot yang relatif ringan yang merupakan salah satu syarat untuk rumah tahan gempa. Untuk meningkatkan daya dukung dinding panel beton polystyrene agar menjadi dinding struktural, alternatifnya adalah menggunakan bahan pelapis perkuatan. Dalam penelitian ini menggunakan spesimen pracetak yang diperoleh dari pracetak pabriksi dengan panjang 1800 mm, lebar 610 mm, dan tebal 75 mm. Penguatan menggunakan papan Kalsium Silikat. Jenis kalsium silikat yang digunakan adalah papan Kalsi. Benda uji disabung menggunakan lem sika dan kemudian dilubangi, jika telah dilakukan pasang bautsebagai konektor geser. Variasi dalam penelitian ini adalah panel beton polystyrene polos, panel beton polystyrene yang diperkuat dengan kalsi, dan panel beton polystyrene yang diperkuat dengan kalsi dan konektor geser baut. Pengujian berdasarkan SNI 03-3122- 1992 (Panel Beton Ringan Berserat). Hasil penelitian menunjukkan bahwa nilai rata-rata berat panel adalah 612,57 kg / m3, modulus elastisitas 942,37 MPa, kekuatan tekan 2,52 MPa dan kapasitas penyerapan air 12,11%. Kekuatan tekan tertinggi diperoleh oleh panel dengan perkuatan kalsiboard sebesar 1,18 MPa. Ini menunjukkan penambahan lapisan perkuatan akan mempengaruhi peningkatan kekuatan. The need to acceleration the provision of residential homes requires the government tried innovative construction system using concrete sandwiches expanded polystyrene used as wall construction. This construction has advantages such as having a relatively lighter weight, relatively more economical prices, and the ease and speed of construction. This construction is expected to reduce the risk of damage due to earthquakes because it has a relatively light weight which is one of the requirements for earthquake resistant houses. To increase the bearing capacity of expanded polystyrene concrete panel walls to be a structural wall, the alternative is to use reinforced coating material. In this study using precast specimens obtained from the precast manufacturing with a length of 1800 mm, width 610 mm, and thick 75 mm. Strengthening using the Calcium Silicate board. The type of calcium silicate used is the Kalsi board. The test object is glued using sika glue and then drilling, if it is has done to install the bolt as a sliding connector. Variations in this study are expanded polystyrene concrete panels without reinforcement, with reinforcement, and with reinforcement and bolt shear connectors. Testing based on SNI 03-3122- 1992 (Fibrous Lightweight Concrete Panel). The results showed that the average value of the panel weight was 612,57 kg/m3, the elastic modulus was 942,37 MPa, compressive strength of 2,52 MPa and water absorption capacity of 12,11%. The highest compressive strength was obtained by the panel with a calibration of 1,18 MPa. This shows the addition of reinforcement layers will affect the increase in strength.
Performance of a Cold Formed Steel Pedestrian Bridge under Static and Dynamic Loads Ali Awaludin; Maria Yasinta Menge Making; muhammad Nur Ikhsan; Yohan Adiyuano
Civil Engineering Dimension Vol. 23 No. 2 (2021): SEPTEMBER 2021
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (794.705 KB) | DOI: 10.9744/ced.23.2.108-114

Abstract

This paper summarizes new application of CFS in bridge constructions where a seven meters long pedestrian bridge was constructed. The bridge has 1.2m width, 0.8m depth, and is composed of CFS Warren truss and bondek floor systems. Natural frequency of the bridge considering only dead load application was found as 8.54 Hz and decreased to 7.08 Hz when the live load was included. Under static load test, the application of dead load only and both dead and live loads yielded a maximum deflection of 3.53 and 8.1 mm, respectively. Normal walking and running pedestrian loads were carried out created a maximum acceleration equaled to 0.11g. Lastly, sinusoidal waves application facilitated through a three-phase induction motor having self-weight of 24.86 kgf at frequency equal to 8.5 Hz was performed for one hour resulting no decrease of the natural frequency, thus the bridge can be assumed to experience no noticeable stiffness degradation.
Stress Analysis of Pin Connections in Steel Box Girder with the Unibridge System using Finite Element Model Ayu Sinta Aprilia; Ali Awaludin; Suprapto Siswosukarto; Ngudiyono Ngudiyono
Civil Engineering Dimension Vol. 26 No. 1 (2024): MARCH 2024
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9744/ced.26.1.91-100

Abstract

This study analyzes the Unibridge system, a modular steel box girder employing two pins for longitudinal connections, thereby expediting construction compared to traditional girders. A finite element model was developed to analyze the stress on these pins in a single-box girder with five segments and a reinforced concrete floor slab. Various loads were applied following the Indonesian bridge loading standard, SNI 1725:2016. The model considers operational load analysis and assumes full composite behaviour between the top flanges of the girder and the concrete floor slab. The results indicate that the Von-Mises stress on the pins reaches a maximum of 490.95 MPa under combined service loads, consistently remaining below the specified material yield stress limit of 1200 MPa. Consequently, the Demand Capacity Ratio (DCR) is 0.41. As a result, the Unibridge girder connection pins do not experience plastic deformation under the applied loads.
Performance Optimization of Strengthened Slab-on-Pile Structure with Braced Frame Muhammad Firman Hidayat; Ali Awaludin; Bambang Supriyadi
Civil Engineering Dimension Vol. 26 No. 2 (2024): SEPTEMBER 2024
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9744/ced.26.2.138-150

Abstract

Slab-on-pile (SOP) have been constructed widely in many highway projects in Indonesia as it is preferable in soft-soil sites. This study is aimed to determine the optimal structural configuration by adding braced frame devices to the longitudinal direction of the slab-on-pile structure. The optimization process was carried out to obtain the minimum number of pile configurations, reducing construction costs. A total of three numerical models were compared, namely SOP-A, SOP-B, and SOP-C, representing SOP with configurations of 50 piles, 35 piles, and 35 piles plus thirty braced frames, respectively. The cyclic analysis procedure and structure design were executed based on ACI 374.1 and the Indonesian standard SNI 1725:2016. The results showed that all P-M responses of the SOP-A and SOP-C structures met the cross-section capacity requirements, except for the SOP-B. The addition of braced frames in SOP-C facilitated a 38% energy dissipation improvement and caused a significant reduction of number of the spun piles.