Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter Debby Alita; Sigit Priyanta; Nur Rokhman
Journal of Information Systems Engineering and Business Intelligence Vol. 5 No. 2 (2019): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2983.476 KB) | DOI: 10.20473/jisebi.5.2.100-109

Abstract

Background: Indonesia is an active Twitter user that is the largest ranked in the world. Tweets written by Twitter users vary, from tweets containing positive to negative responses. This agreement will be utilized by the parties concerned for evaluation.Objective: On public comments there are emoticons and sarcasm which have an influence on the process of sentiment analysis. Emoticons are considered to make it easier for someone to express their feelings but not a few are also other opinion researchers, namely by ignoring emoticons, the reason being that it can interfere with the sentiment analysis process, while sarcasm is considered to be produced from the results of the sarcasm sentiment analysis in it.Methods: The emoticon and no emoticon categories will be tested with the same testing data using classification method are Naïve Bayes Classifier and Support Vector Machine. Sarcasm data will be proposed using the Random Forest Classifier, Naïve Bayes Classifier and Support Vector Machine method.Results: The use of emoticon with sarcasm detection can increase the accuracy value in the sentiment analysis process using Naïve Bayes Classifier method.Conclusion: Based on the results, the amount of data greatly affects the value of accuracy. The use of emoticons is excellent in the sentiment analysis process. The detection of superior sarcasm only by using the Naïve Bayes Classifier method due to differences in the amount of sarcasm data and not sarcasm in the research process.Keywords:  Emoticon, Naïve Bayes Classifier, Random Forest Classifier, Sarcasm, Support Vector Machine
A hybrid recommender system based on customer behavior and transaction data using generalized sequential pattern algorithm Ramos Somya; Edi Winarko; Sigit Priyanta
Bulletin of Electrical Engineering and Informatics Vol 11, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i6.4021

Abstract

In the future, the quality of product suggestions in online retailers will influence client purchasing decisions. Unqualified product suggestions can result in two sorts of errors: false negatives and false positives. Customers may not return to the online store as a result of this. By merging sales transaction data and consumer behavior data in clickstream data format, this work offers a hybrid recommender system in an online store utilizing sequential pattern mining (SPM). Based on the clickstream data components, the product data whose status is only observed by consumers is assessed using the simple additive weighting (SAW) approach. Products with the two highest-ranking values are then coupled with product data that has been purchased and examined in the SPM using the generalized sequential pattern (GSP) method. The GSP algorithm produces rules in a sequence pattern, which are then utilized to construct product suggestions. According to the test results, product suggestions derived from a mix of sales transaction data and consumer behavior data outperform product recommendations generated just from sales transaction data. Precision, recall, and F-measure metrics values rose by 185.46, 170.83, and 178.43%, respectively.
Fishku Apps: Fishes Freshness Detection Using CNN With MobilenetV2 Muthia Farah Hanifa; Anugrah Tri Ramadhan; Ni’Matul Husna; Nabila Apriliana Widiyono; Rhamdan Syahrul Mubarak; Adisti Anjani Putri; Sigit Priyanta
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 1 (2023): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.80049

Abstract

Marine fish are one of the most promising economic commodities for the Indonesian economy. Marine fish will decrease in protein content along with the decreasing level of freshness of the fish that will be consumed. There are still many people who do not know about the classification of fresh and unfresh fish, so we need a system that can classify which fish are fresh and which are not. Previous studies have succeeded in classifying tuna using a convolutional neural network (CNN) algorithm with an accuracy of 90%. In the preprocessing stage of this research, segmentation is carried out, which aims to separate the object to be studied and the background image, then feature extraction is carried out using a color moment, which aims to get the value of the object to be studied. This research was conducted to increase the accuracy value in the freshness classification of tuna and also to add some fish for freshness detection, such as mackerel and milkfish, using the MobilenetV2. The results were able to produce accuracy of 97%, 94%, and 93% for each fish. The freshness detection method in this study has been implemented in the Fishku mobile-based application.