Claim Missing Document
Check
Articles

Found 2 Documents
Search

Training Making Materials Video Interactive Learning For Teachers in SMK Negeri 1 Muara Enim Sri Desy Siswanti; Darmawijoyo Darmawijoyo; Saparudin Saparudin; Syamsuryadi Syamsuryadi; Ahmad Fali Oklilas; Hadi Purnawan Satria; Anggina Primanita
Annual Research Seminar (ARS) Vol 1, No 1 (2015)
Publisher : Annual Research Seminar (ARS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Report on the implementation of community service describes the learning outcomes of the training video creation intended for Vocational High School (SMK) Negeri 1 Muara Enim. The training was attended by 66 teachers. This training provides a solution to improve the teaching of teachers SMK 1 Muara Enim is by making instructional materials in the form of video lessons. The training is carried out with extension methods and practices, to support the training is complemented every teacher training modules in softcopy. The training was held at the Hall of SMK 1 Muara Enim. To measure the result of performance evaluation activities, where the outcome is a matter of understanding of the material by the participants, the average value reached approximately 80-100 giving the correct answer. For the future need this kind of training activities with the broader material and a longer period  with the aim to improve the quality of teaching and school teachers.
Klasifikasi Gambar Bergerak Pada Pengenalan Wajah Menggunakan Metode Convolutional Neural Network (CNN) Ahmad Zarkasi; Muhammad Nawar Athalaza; Hadi Purnawan Satria; Anggina Primanita; Sutarno Sutarno; Abdurahman Abdurahman; Yoppy Sazaki
Jurnal Sistem Informasi Vol 14, No 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36706/jsi.v14i2.19372

Abstract

Setiap orang memiliki wajah yang berbeda-beda yang memiliki ciri khas. Wajah dapat digunakan untuk menjalankan suatu sistem. Sistem dapat digunakan untuk sistem keamanan, pengenalan identitas, bahkan untuk pergerakan robot. Gerakan robot dapat dikontrol dengan gerakan wajah. Pengembangan pengenalan pola wajah sudah banyak terapkan dengan berbagai metode, diantaranya tamplate matching dan Haar Cascade. Salah satu implementasi pengenalan wajah adalah analisi untuk wajah bergerak. Pada penelitian ini, bertujuan untuk mengimplementasikan metode CNN untuk pengenalan pola wajah bergerak dengan mengklasifikasikan pola wajah dalam beberapa kalsifikasi. Hasilnya penganalan pola wajah menunjukkan bahwa akurasi pelatihan adalah 90% dan kerugian adalah 2.3%. Sedangkan akurasi validasi 95% dan loss 0,5%.