Claim Missing Document
Check
Articles

Found 5 Documents
Search

Geographically Weighted Poisson Regression Model with Adaptive Bisquare Weighting Function (Case study: data on number of leprosy cases in Indonesia 2020) Ineu Sintia; Suyitno Suyitno; Memi Nor Hayati
Jurnal Matematika, Statistika dan Komputasi Vol. 19 No. 1 (2022): SEPTEMBER, 2022
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v19i1.21879

Abstract

Abstract Geographically Weighted Poisson Regression (GWPR) is a Poisson regression model which is applied on spatial data. The parameter estimation of GWPR is done in each observation location through spatial weighting. This study aims to determine the GWPR model of the number of leprosy cases in each province of Indonesia 2020 and to find the influencing factors. The research uses secondary data collected from Indonesian Ministry of Health and Central Statistics Agency. The spatial weighting is calculated by using the adaptive bisquare function, while the optimum bandwidth is determined by using Generalized Cross-Validation criteria (GCV). The parameter estimation of GWPR uses Maximum Likelihood Estimation (MLE) method. The result of research show that the closed form of Maximum Likelihood (ML) estimator can not be found analytically and that the approximation of ML estimator is found by using Newton-Raphson iterative method. Based on the parameter significance test of the GWPR model, the factors that influenced the number of leprosy cases locally are the percentage of households that have access to proper sanitation, population density, the percentage of people who experience health complaints and outpatient, the number of health workers, the percentage of poor people, the percentage of districts/cities that carry out healthy living community movement (GERMAS) and the percentage of habitable houses. While the factors that globally affected the number of leprosy cases are  the percentage of households that have access to proper sanitation, population density, the percentage of people who experience health complaints and outpatient, the number of health workers, the percentage of poor people, the percentage of districts/cities that carry out GERMAS.  
Penaksiran Parameter Model Mixed Geographically Weighted Regression (MGWR) Data Indeks Pembangunan Manusia di Kalimantan Tahun 2016 Mita Asti Wulandari; Suyitno Suyitno; Wasono Wasono
EKSPONENSIAL Vol 10 No 2 (2019)
Publisher : Program Studi Statistika FMIPA Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (795.642 KB)

Abstract

Mixed Geographical Regression (MGWR) model is a combination of global linear regression model and GWR model. Some MGWR parameters are global (the same value) and the other parameters are local (different values) ​​at each observation location. The purpose of this study is to obtain MGWR model for every District’s HDI and to obtain the factors that significantly influence District HDI in East Kalimantan, Central Kalimantan and South Kalimantan Provinces. Estimating parameters for global parameters use Ordinary Least Square (OLS) method. Estimating parameters for local parameters use Weighted Least Square (WLS) method, where weighting spatial is determined by using gaussian adaptive function. Based on the result of MGWR parameters testing, it was concluded that the school enrollment rates (SMP) affected the HDI of all districs in East Kalimantan, Central Kalimantan and South Kalimantan provinces. The population density and the percentage of poor people influence locally to HDI.
Penaksiran Parameter dan Pengujian Hipotesis Model Regresi Weibull Univariat Suyitno Suyitno
EKSPONENSIAL Vol 8 No 2 (2017)
Publisher : Program Studi Statistika FMIPA Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (509.861 KB) | DOI: 10.30872/eksponensial.v8i2.41

Abstract

In this study, a univariate Weibull regression model is discussed. The Weibull regression is a regression model developed from the Weibull distribution, that is the Weibull distribution depending on the covariates or the regression parameters. The univariate Weibull regression (UWR) model can involve the survival function model and the mean model of the response variable with the scale parameter stated in the terms of the regression parameters. The aim of this study is to estimate the UWR model parameters using the maximum likelihood estimation (MLE) method, and to test the regression parameters. The result shows that the closed form of the maximum likelihood estimator can not be found analytically, and it can be approximed by using the Newton-Raphson iterative method. The regression parameters testing involves simultaneous and partial test. The test statistic for simultaneous test is Wilk's likelihood ratio. Wilk statistic follows Chi-square distribution, which can be derived from the likelihood ratio test (LRT) method. The test statistic for partial test is Wald and it follows standard normal distribution. The alternative test statistik for partial test is squared of Wald statistic, where it follows Chi-square distribution with one degree of freedom.
Pengenalan Pojok Statistik Sejak Dini dan Ilmu Data Sains Bagi Siswa dan Guru di SMAN Kota Samarinda Meirinda Fauziyah; Sifriyani Sifriyani; Sri Wahyuningsih; Suyitno Suyitno; Andrea Tri Rian Dani; Siti Mahmuda; Hadi Koirudin
Journal of Research Applications in Community Service Vol. 2 No. 3 (2023): Journal of Research Applications in Community Service
Publisher : Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/jarcoms.v2i3.2263

Abstract

Pendidikan merupakan bentuk usaha sadar seseorang untuk mengembangkan potensi diri agar memiliki kekuatan spiritual, keagamaan, serta keterampilan diri. Pada masa kini keterampilan diri terfokus dalam urgensi data yang banyak dibutuhkan di sektor industri dengan keahlian menganalisis masalah dan menghasilkan insight untuk menjawab kepentingan manusia di masa depan dengan mengenal ilmu data sains. Data sains merupakan cabang ilmu gabungan dari statistika, pendekatan sains, Artificial Intelligence (AI) untuk menganalisis sebuah big data sampai menghasilkan kesimpulan yang mudah dipahami. Tujuan kegiatan PKM ini memberikan pemahaman informasi pojok statistik sebagai wadah ilmu statistik kepada siswa dan guru sejak dini, membagikan informasi pengembangan ilmu data sains terkini menjadi seorang data scientist. Pelaksanaan kegiatan ini menggunakan metode Participatory Learning and Action (PLA) dengan melibatkan siswa/siswi dan guru. Hasil dari kegiatan ini menunjukkan bahwa terdapat perbedaan pemahaman sebelum dan setelah diberikan pemahaman ilmu data sains.
Pemodelan Peluang Pencemaran Air Sungai Menggunakan Model Geographically Weighted Logistic Regression (Studi Kasus: Data DO Air Sungai di Kalimantan Timur) Adelia Miranda; Suyitno Suyitno; Meirinda Fauziyah
Jurnal Matematika, Statistika dan Komputasi Vol. 21 No. 2 (2025): JANUARY 2025
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v21i2.40346

Abstract

Geographically Weighted Logistic Regression (GWLR) is a local binary logistic regression model, and it’s applied to the spatial heterogeneity data. The parameter estimation of GWLR model in this study uses Maximum Likelihood Estimation (MLE) method, and it’s conducted at each observation location with spatial weighting. The spatial weight in this study was calculated using the adaptive tricube function. The spatial weighting function depends on distance between observation location and bandwidth, where the determination of optimal bandwidth uses the Akaike Information Criterion (AIC). The aim of this research is to identify the factors influencing the probability of river water pollution in East Kalimantan Province through GWLR modelling to Dissolved Oxygen (DO) data 2022, and to interpret it based on the best model. The research data is secondary data provided by Life Environment Department of East Kalimantan Province. Research concludes that the GWLR was fit model based on the results of similarity testing of the GWLR model and global model, as well as simultaneous parameter testing, with the model fitting measure was a McFadden R-Squared value of 61,1%, and an AIC value of 29,629. Based on partial parameter testing, local factors influencing chance of river water pollution in East Kalimantan can be identified, namely nitrate concentration and water color degree. Based on the GWLR modelling to DO data 2022, it can be interpreted that increasing nitrate concentration and water colour degree respectively will increase the probability of river water pollution