Han Ay Lie
Jurusan Teknik Sipil FT. UNDIP Jl. Prof. H. Soedarto, SH., Tembalang, Semarang 50275

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

KAJIAN PORTAL BAJA SRPMB (ELASTIS) DAN PORTAL BAJA SRPMK (DAKTAIL) BERDASARKAN SNI 03-1726-2012 DAN SNI 03-1729-2002 Hamdany Auliya; Sarwiasih Tri Purboningrum; Han Ay Lie; Himawan Indarto
Jurnal Karya Teknik Sipil Volume 3, Nomor 4, Tahun 2014
Publisher : Departemen Teknik Sipil, Fakultas Teknik Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.738 KB)

Abstract

The most current Indonesia National Standard on earthquakes SNI 03-1726-2012 is designed to anticipate the latest earthquake events in the past decade. This standard as well as the former SNI 03-1729-2002 incorporates the guidance for Ordinary Moment Resisting Frame Systems(SRPMB)andSpecial Moment Resisting Frame Systems (SRPMK). This study evaluates the performance steel frames based on the two standards for high, and intermediate seismic regions with a variation in soil conditions. The aim of this study was to obtain the most appropriate structural steel system for high and intermediate earthquake regions. The analysis was performed with the aid of a structural analysis program, and approached as a two-dimensional case. The responseof earthquake loads was analyzed by the dynamic response spectrum modal analysis on 8, 10 and 12 storey buildings. The Semarang area was chosen for the intermediate seismic response, while Banda Aceh functioned a prototype for the high seismic area. Three soil types were taken into consideration; hard, medium and soft soil. The study showed that the nominal of the earthquake load in the area of Banda Aceh was approximately equal to 164% of the nominal earthquake load in Semarang. For the variations in soil type it was found that for the Semarang as well as the Banda Aceh region, the nominal earthquake loads on a steel structure based on the SRPMB was approximately equal to 228,6% to the SRPMK. Further it was concluded that the SRPMK steel stucture was able to reduce the earthquake load by approximately 87,5% as compared to the SRPMB steel structure that resulted in an earthquake load reduction of 71,4%. It was therefore advised to use the SRPMK in designing steel structures for areas in high seismic regions, whiles for the medium seismic regions the both the SRPMB and the SRPMK method will yield in an optimum design.
STUDI EKSPERIMENTAL PENGARUH TEGANGAN TEKAN SELAMA PROSES PRODUKSI TERHADAP KUAT TEKAN DRY CONCRETE M. Mirza Abdillah Pratama; Vemi Widoanindyawati; Han Ay Lie; Purwanto Purwanto
Jurnal Karya Teknik Sipil Volume 3, Nomor 4, Tahun 2014
Publisher : Departemen Teknik Sipil, Fakultas Teknik Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (452.617 KB)

Abstract

Dry concrete is basically a cementitious material, consisting of aggregates imbedded in a cement matrix that function as the binding agent. The water cement factor during this production is customary kept low, since from the economic point of view, speed in production is favored. A low water-cement-factor will result in a faster unmolding of elements. As a consequence, the probability of the hydration process is not at optimum. A technique of optimizing the hydration process is to apply a compression stress to the dry concretes, during the hydration stage. This stress is aimed to reduce the air voids in the mixture and to enable the entrapped water within the mortar to optimize the reaction with the cement. The application of compression stress is not only freed the entrapped water, but also creates a more dense material so it will provides a better performance of the dry concrete. This study uses 2 types of mix design with a water-cement ratio of 0.4 and 9 types of compressive stress variations during the production process from 0 MPa to 40 MPa. The experimental test showed that the compressive stress during the production process affect the compressive strength of dry concrete. The greater compressive stress given during the production process increase the compressive strength of the dry concrete. This increase occurred gradually until it reaches the optimum compressive stress, which is 35 MPa. The rate of increase in compressive strength and the optimum compressive stress on both the mix design is in the same point, it is due to both the mix design using the same water-cement ratio.
STUDI EKSPERIMENTAL PENGARUH TEGANGAN TEKAN SELAMA PROSES PRODUKSI TERHADAP KUAT TEKAN DRY CONCRETE M. Mirza Abdillah Pratama; Vemi Widoanindyawati; Han Ay Lie; Purwanto Purwanto
Jurnal Karya Teknik Sipil Volume 3, Nomor 4, Tahun 2014
Publisher : Departemen Teknik Sipil, Fakultas Teknik Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (452.617 KB)

Abstract

Dry concrete is basically a cementitious material, consisting of aggregates imbedded in a cement matrix that function as the binding agent. The water cement factor during this production is customary kept low, since from the economic point of view, speed in production is favored. A low water-cement-factor will result in a faster unmolding of elements. As a consequence, the probability of the hydration process is not at optimum. A technique of optimizing the hydration process is to apply a compression stress to the dry concretes, during the hydration stage. This stress is aimed to reduce the air voids in the mixture and to enable the entrapped water within the mortar to optimize the reaction with the cement. The application of compression stress is not only freed the entrapped water, but also creates a more dense material so it will provides a better performance of the dry concrete. This study uses 2 types of mix design with a water-cement ratio of 0.4 and 9 types of compressive stress variations during the production process from 0 MPa to 40 MPa. The experimental test showed that the compressive stress during the production process affect the compressive strength of dry concrete. The greater compressive stress given during the production process increase the compressive strength of the dry concrete. This increase occurred gradually until it reaches the optimum compressive stress, which is 35 MPa. The rate of increase in compressive strength and the optimum compressive stress on both the mix design is in the same point, it is due to both the mix design using the same water-cement ratio.