Iin Parlina
STIKOM Tunas Bangsa

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Model Clustering Algoritma K-Mean Dalam Menentukan Kriteria Kondisi Gizi Balita Dan Anak khairul zannah; Sumarno Sumarno; Zulaini Masruro Nasution; Iin Parlina; Ika Purnama Sari
Jurnal Dinamika Informatika Vol 11 No 1 (2022): Jurnal Dinamika Informatika Vol.11 No.1
Publisher : Universitas PGRI Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (892.902 KB)

Abstract

The current level of health for toddlers and children is still a challenge in every region. Nutrition is very important for toddlers and children, a balanced nutritional value is very good in the process of growth and development of toddlers and children, especially in influencing height and weight growth, motor development, and daily activities. The problem currently being experienced in Nagori Sitalasari is that there are still many parents who do not know the value of balanced nutrition for toddlers and children, there are still toddlers and children who are still malnourished or stunted based on age and weight. The method used in this research is literature study and observation. This study will group or cluster the nutritional values of toddlers with reference to the parameters of toddler age, toddler height and toddler weight using the K-Means Clustering algorithm into 3 (three) categories, namely poor nutrition, good nutrition and obesity. The results of the research conducted can classify the nutritional value of children under five in general so that it can be used as a basis for early prevention for posyandu cadres to overcome malnutrition and obesity.
Penerapan K-Means pada Pengelompokan Penjualan Produk Smartphone Fatimah Putri Arfani Hasibuan; Sumarno Sumarno; Iin Parlina
SATESI: Jurnal Sains Teknologi dan Sistem Informasi Vol. 1 No. 1 (2021): April 2021
Publisher : Yayasan Pendidikan Penelitian Pengabdian ALGERO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54259/satesi.v1i1.3

Abstract

The development of smartphone technology companies that are increasingly rapidly today has more or less led to competition between these companies, thus requiring developers to find strategies or patterns that can increase product sales and marketing, as is the case at PT. Vivo Communication Indonesia Pematangsiantar branch. One of the strategies is to utilize transaction data by grouping them to see which products are more salable in the market and which are not, so that evaluations can be made in planningthe next Vivo product promotion. The clustering method in this study uses the K-Means Clustering method. The K-Means method is a data mining method that is able to group some data into certain parts. In this paper the sales data that has been obtained will be divided into 3 groups, namely low sales, medium sales and high sales. Based on the results of testing using the K-Means method on Vivo smartphone sales data, it was found that the highest sales group had only 1 data, namely Vivo Y12 3+32GB. So it can be concluded that the K-Means method can be applied to group Vivo smartphone sales, because it is in accordance with the actual sales results.
MODEL CLUSTERING MENGGUNAKAN ALGORITMA K-MEAN DALAM MENENTUKAN KRITERIA KONDISI GIZI BALITA DAN ANAK Khairul Zannah; Sumarno Sumarno; Zulaini Masruro Nasution; Iin Parlina; Ika Purnama Sari
JUTEKIN (Jurnal Teknik Informatika) Vol 10, No 1 (2022): JUTEKIN
Publisher : LPPM STMIK DCI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51530/jutekin.v10i1.568

Abstract

Tingkat kesehatan pada balita dan anak pada saat ini masih menjadi sebuah tantang di setia daerah. Gizi sangatlah penting bagi balita dan anak, nilai gizi yang seimbang sangat baik dalam proses tumbuh kembang balita dan anak terutama dalam mempengaruhi pertumbuhan tinggi dan berat, perkembangan motorik, dan aktivitas keseharian. Permasalahan yang saat ini dialami di Nagori Sitalasari masih banyaknya orang tua yang tidak mengetahui nilai gizi yang seimbang bagi balita dan anak, masih ditemukan balita dan anak yang masih kurang gizi atau stunting berdasarkan usia dan berat badan. Metode yang digunakan dalam penelitian ini adalah studi literature dan observasi. Penelitian ini akan di kelompokan atau klasterisasi nilai gizi balita dengan acuan parameter usia balita, tinggi badan balita dan berat badan balita menggunakan algoritma K-Means Clustering menjadi 3 (tiga) kategori yaitu gizi buruk, gizi baik dan obesitas. Hasil dari penelitian yang dilakukan dapat mengklasifikasi nilai gizi balita secara umum agar dapat digunakan sebagai landasan pencegahan dini bagi para kader posyandu menanggulangi gizi buruk serta obesitas.Kata Kunci: Algoritma K-Means, Balita, Clustering dan Gizi.