Articles
MENAKSIR NILAI INTEGRAL BESAR
Mutya Pratami;
M. Natsir;
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses a new method to estimate the value of the integral of the form Z M a exp(f (x))dx, where M → ∞ and x > 0. The discussion includes the reduction method with First Approximation and Further Approximations. Furthermore, supported by a few example of the use of this new method.
SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR
Eka Parmila Sari;
Supriadi Putra;
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses the existence and uniqueness of the solution, which was obtained using Adomian decomposition method, of a nonlinear quadratic integral equation. The discussion was continued by providing an analytical study of the convergence and the absolute error which are obtained by the solution found using Adomian decomposition method. The process of obtaining the solution of a nonlinear quadratic integral equation using Adomian decomposition method then expanded to the modified Adomian decomposition method. Comparison using numerical computation shows that the solution of quadratic nonlinear integral equationobtained using the modified Adomian decomposition method is better than those obtained by Adomian decomposition method.
METODE ITERASI BARU YANG OPTIMAL BERORDE EMPAT TANPA TURUNAN KEDUA DAN DINAMIKNYA
Fitria Afri Yanti;
Imran M.;
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses an iterative metho d to solve a nonlinear equation, which is free from second derivative by approximating a second derivative by a divided difference. Analytically it is shown using the Taylor expansion and geometric series that this iterative metho d has a convergence of order four. Furthermore, numerical comparisons between the prop osed metho d and several well-known iterative methods of order four and free from second derivative are p erformed. By varying the initial guesses, we compare the numb er of iterations obtained by those methods to get an approximated ro ot. In addition, comparisons are also made through basins of attraction of the discussed methods.
KONSEP METODE ITERASI VARIASIONAL
Yuliani ';
Leli Deswita;
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
We discuss a basic concept of variational iteration method for solving partial differential equations. Variational iteration method, which can be used for finding iterative formula, consists of three basic concepts, namely a general Lagrange multiplier, a restricted variation and a correction functional.
METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR
Eka Ceria;
Agusni ';
Zulkarnain '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses a new derivative-free iterative method to find the solutions of nonlinear equations. Analytically it is shown that the order of convergence of the method is two. The advantage of this iterative method is that it can be used to obtain real roots and complex roots. In terms of this ability, the method is equivalentto Muller’s method. Numerical tests show that the iterative method is superior and efficient in terms of the number of iterations required to obtain a root.
METODE ITERASI TIGA LANGKAH DENGAN KEKONVERGENAN BERORDE ENAM BELAS
Ricko Saputra;
Supriadi Putra;
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses a new method for finding roots of nonlinear equations. The process of forming the new method is derived from combining Newton’s method and King’s method with b= -0.5. Error analysis performed on the new method shows that it has a convergence of order sixteen. Numerical examples are compared to Newton’s method, King’s method, and the new method.
MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT
Yenni May Sovia;
Agusni ';
Supriadi Putra
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses the modification of Newton’s method using a slope-line approximate in a form of quadratic polynomial to solve a nonlinear equation. This iterative method has a convergence of fourth order and for each iteration, it requires three function evaluations, so the efficiency index of the method is 1.587, which isbetter than that of the Newton’s method, which is 1.414. Furthermore, the computational tests show that proposed method is superior to the Newton’s method in terms of speed to obtain a root.
EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON
Novrialman ';
Sri Gemawati;
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Poisson Integral is one of the definite integrals that can not be solved by an elementary technique. In this article, we discuss four ways to solve the Poisson integral on the interval [-1, 1], that is using the Riemann sum, functional equations, parametric derivatives and infinite series. All of the methods produce the same solution.
FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU
Syofia Deswita;
Syamsudhuha ';
Agusni '
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses an alternative formula to obtain the particular solution of non-homogeneous linear dierential equations of constant coecients, where the nonhomogeneous terms are in the form of a trigonometry, an exponent or a polynomial function, using the multiplication of a polynomial with a complex exponential function. The particular solution obtained is in the form of a polynomial.
METODE ITERASI TIGA LANGKAH DENGAN ORDE KONVERGENSI LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BERAKAR GANDA
Zuhnia Lega;
Agusni ';
Supriadi Putra
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
This article discusses the three-step iterative method free from derivatives, modied from Newton's three-step method that contains two derivatives, to nd a multiple root of a nonlinear equation with unknown multiplicity. This iterative method has fth order of convergence and for each iteration, it requires four function evaluations, so the eciency index of the method is 1.495. Furthermore, the computational test shows that the discussed method is better than the comparison method when the success of this method is seen in getting estimated roots.