Okta Danik Nugraheni
Institut Pertanian Bogor

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Inti Sawit Berdasarkan Analisis Tekstur dan Morfologi Menggunakan K-Nearest Neighborhood (KNN) Okta Danik Nugraheni; I Wayan Astika; I Dewa Made Subrata
Jurnal Keteknikan Pertanian Vol. 5 No. 2 (2017): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1820.798 KB) | DOI: 10.19028/jtep.05.2.%p

Abstract

AbstractAs the by product of palm oil, palm kernel contains high-quality oil. The manual inspection has low efficiency, subjective and inconsistent results due different perspectives between the buyer and the seller regarding the kernel quality. This research aims to determine the quality of palm kernel using the texture and morphological image analysis. Texture analysis performed on the kernel images separation to obtain the value of the mean, variance, skewness, kurtosis, entropy, energy, contrast, correlation, and homogeneity. Morphology analysis performed on the kernel images separation to obtain the value of the area, perimeter, metrics, and eccentricity. The classification was performed by KNearest Neighbor (KNN) method. Based on a simulation, the classification system could classify the palm kernel into the whole kernels, broken, and shells. The highest accuracy of 66.59 % was obtained by using a combination of mean and morphology when k was 1. AbstrakSebagai produk samping dari buah kelapa sawit, inti sawit mengandung minyak berkualitas tinggi. Penentuan mutu inti secara manual seringkali mengakibatkan terjadi konflik antar pembeli dan penjual. Proses penentuan mutu secara manual memiliki kekurangan pada rendahnya efisiensi, subjektif, dan tidak konsisten. Penelitian ini bertujuan untuk mempelajari kualitas inti sawit menggunakan analisis tekstur dan morfologi. Analisis tekstur dilakukan terhadap hasil pemisahan untuk mendapatkan nilai mean, variance, skewness, kurtosis, entrophy, energy, contrast, correlation, dan homogenity. Analisis morfologi dilakukan terhadap hasil pemisahan untuk mendapatkan nilai area, perimeter, metric, dan eccentricity. Dalam penelitian ini, metode klasifikasi yang digunakan adalah metode K-Nearest Neighbor (KNN). Berdasarkan simulasi, dapat disimpulkan bahwa sistem dapat diklasifikasikan menurut inti utuh, inti pecah, dan cangkang. Akurasi tertinggi 66.59% diperoleh dengan menggunakan kombinasi mean dan morfologi ketika k adalah 1.