I Wayan Astika
Departemen Teknik Pertanian And Biosistem (TPB), Fakultas Teknologi Pertanian (Fateta), Institut Pertanian Bogor (IPB) Jl. Agatis Kampus IPB Dramaga, Bogor 16680

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 15 Documents
Search

RAINFALL PREDICTION MODELING USING NEURAL NETWORK ANALYSIS TECHNICS AT PADDY PRODUCTION CENTRE AREA IN WEST JAVA AND BANTEN PRAMUDIA, ARIS; KOESMARYONO, Y; LAS, IRSAL; JUNE, T; ASTIKA, I WAYAN; RUNTUNUWU, ELEONORA
Jurnal Tanah dan Iklim (Indonesian Soil and Climate Journal) No 27 (2008): Juli 2008
Publisher : Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21082/jti.v0n27.2008.%p

Abstract

Rainfall fluctuates with time and changes randomly, which unfavorable for most of the cropping, such as paddy. An early warning system is required to ensure a productive paddy cropping system. This paper describes the rainfall prediction modelling using a neural network analysis at paddy production centre area in the northern coast of Western Java and Banten. Rainfall data from Baros in the northern coast of Banten, Karawang, and Kasomalang Subang in the northern coast of West Java have been used for setting and validating the model. The model provides rainfall prediction for the next three months (Y=CHt+3), using the inputs data of the number of month (X1=t), the rainfall at the current month (X2=CHt), the rainfall atthe following month (X3=CHt+1), the rainfall at the following two months (X4=CHt+2), the southern ossilation index (SOI) at the current month (X5=SOIt) and the NINO-3,4 sea surface temperature anomaly at the current month (X6=AnoSSTt). Rainfall data recorded in the 1990-2002 period have been used for composing the model, and those in the 2003-2006 periods have been used for validating the model. The validated model has been used to predict rainfall in the 2007-2008. The best modelare those that using a combination of those six input variables. These models are able to explain 88-91% of the data variability with 4-8 mm month-1 of the maximum prediction error. At Baros Serang, the predicted rainfall in the 2007-2008 periods will be varied from Normal to Above Normal. At Karawang and Kasomalang Subang, predicted rainfall will be high at the end of 2007 until early 2008, and then will be low in the middle of 2008 and increases at the end of 2008.
IDENTIFIKASI MUTU FISIK BERAS DENGAN MENGGUNAKAN TEKNOLOGI PENGOLAHAN CITRA DAN JARINGAN SYARAF TIRUAN (Identification of physical quality of rice by using technology image processing and artificial neural network) Agus Supriatna Somantri; Emmy Darmawati; I Wayan Astika
Jurnal Penelitian Pascapanen Pertanian Vol 10, No 2 (2013): Jurnal Penelitian Pascapanen Pertanian
Publisher : Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21082/jpasca.v10n2.2013.95-103

Abstract

Proses pemutuan beras sangat penting untuk dilakukan sebelum beras dipasarkan. Sampai saat ini proses pemutuan beras masih dilakukan secara manual (visual) yang dilakukan oleh para ahli yang berpengalaman, namun cara ini memiliki kelemahan : 1) Adanya faktor subjektif dari pengamat (ahli); 2) Kondisi fisik dan psikologis pengamat yang menyebabkan tidak konsistennya hasil pemutuan; dan 3) Waktu yang dibutuhkan untuk proses pemutuan relatif lebih lama. Tujuan penelitian ini adalah mempelajari karakteristik mutu fisik beras berdasarkan analisis pengolahan citra dan jaringan syaraf tiruan. Hasil penelitian menunjukkan bahwa proses pemutuan beras kepala, beras patah, beras menir dan gabah dengan menggunakan pengolahan citra digital dapat diminimalisir penggunaan input parameternya hanya dengan menggunakan indeks B, roundness, luas, panjang dan saturation, sedangkan untuk menduga beras merah, beras kuning/rusak, beras hijau mengapur dan benda asing dapat menggunakan parameter indeks R, indeks G, indeks B, roundness dan luas. Keberagaman nilai akurasi pada training dari masing-masing varietas beras disebabkan oleh perbedaan bentuk, ukuran dan warna dari masing-masing butir beras tersebut, sehingga menyebabkan nilai akurasinya berbeda. Training citra beras kepala, beras patah, beras menir dan gabah dengan 5 parameter input menunjukkan hasil yang baik yaitu 97,14% untuk Inpari 13, 99,6% untuk Inpari 19, 98,37% untuk Cirata, 97,9% untuk Muncul dan 99,6% untuk Way Apo Buru. Sedangkan nilai validasinya adalah 96,74% untuk Inpari 13, 95,35% untuk Inpari 19, 96,73% untuk Cirata, 96,02% untuk Muncul, dan 98,68% untuk Way Apo Buru. Training citra beras merah, beras kuning/rusak, beras hijau mengapur dan benda asing hasilnya adalah 98,55% dan hasil validasinya adalah 90,48%.Kata kunci :Pengolahan citra, beras, jaringan syaraf tiruan, mutu fisikEnglish Version AbstractQuality assessment of rice quality is very important activity before it's marketed. Up to now, the rice quality inspection is done manually (visually) by trained examiners who have expertise and experience, but it has disadvantages such as: (1) the subjectivity factor of the observer, (2) the physical exhaustion of observer causing inconsistent result, and (3) the time required for the observation is relatively much longer. The purpose of this research is to develop an image processing method for identifying physical quality of rice. The result showed that the diversity of accuracy values caused by differences of shape, size and color of each variety of rice. The identification of physical quality of head rice, broken rice, groats and paddy can be determined by using the parameters input of image, i.e. index B, roundness, area, length and saturation. As for the estimation of red rice, yellow rice (damaged), chalky grain and foreign matters can be determined by using parameters such as index R, G, B, roundness and area. The accuracy of training of head rice, broken rice, grain groats and unhulled rice by using 5 parameters showed good results, ie 97.14%, 99.6%, 98.37%, 97.9%, and 99.6%, while their validation are 96.74%, 95.35%, 96.73%, 96.02%, and 98.68% for Inpari 13, Inpari 19, Cirata, Muncul and Way Apo Buru respectively. The accuracy of brown rice, yellow rice, chalky grain and foreign matter recognition was 98.55% for training process and 90.48% for validation.Keywords : Image processing, rice, artificial neural network, physical quality
PEMETAAN KERAGAMAN WARNA DAUN PADI DENGAN CITRA YANG DIAMBIL DARI PESAWAT TERBANG MINI I Wayan Astika; Radite P. A. Setiawan; M. Ardiyansah
Teknotan: Jurnal Industri Teknologi Pertanian Vol 6, No 2 (2012)
Publisher : Fakultas Teknologi Industri Pertanian

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan merancang sistem akuisisi data keragaman tingkat warna daun pada suatu hamparan lahan sawah dan memetakan keragaman tersebut secara spasial yang nantinya dipakai sebagai pedoman melakukan pemupukan dengan laju variabel (variable rate application). Tingkat warna daun diukur melalui citra yang ditangkap oleh sebuah kamera digital yang kemudian diolah untuk mendapatkan tingkat warna daun sesuai dengan standar bagan warna daun (BWD) IRRI. Kamera digital dioperasikan dari suatu ketinggian dengan 2 cara yaitu dengan galah vertikal berketinggian sekitar 5 meter dan dengan pesawat terbang mini dari ketinggian sekitar 30-100 meter. Beberapa program komputer dibuat untuk melakukan beberapa proses yaitu mendapatkan koordinat-kordinat patokan, warna patokan, warna setiap piksel, melakukan konversi koordinat citra ke dalam kordinat lahan, pemetaan spasial, dan melakukan grading tingkat warna daun pada peta spasial.Hasil akhirnya adalah peta spasial dimana setiap grid memiliki informasi tingkat kehijauan daun tertentu. Percobaan pendahuluan mendapatkan bahwa perbedaan tingkat warna daun dapat dinyatakan dengan perbedaan komponen warna RGB secara konsisten pada berbagai intensitas cahaya. Artificial neural network dipakai untuk melakukan konversi koordinat di dalam citra ke koordinat lahan. Pengukuran menghasilkan akurasi 18 – 78 % pada pengukuran warna daun dengan galah dan akurasi 64 – 78 % untuk pemakaian pesawat terbang mini. Permasalahan yang dihadapi adalah efek pandangan perspektif pada citra lahan, adanya efek mata ikan pada penerbangan tinggi, dan ketelitian dalam memilih piksel patokan. Kata kunci: pertanian presisi, sensor kamera, warna daun, dosis pemupukan, pesawat terbang mini, artificial neural network
Pengembangan Dan Uji Kinerja Mesin Pemupuk Dosis Variabel Pada Budidaya Padi Sawah Dengan Konsep Pertanian Presisi Pandu Gunawan; Radite P.A. Setiawan; I Wayan Astika
Jurnal Keteknikan Pertanian Vol. 27 No. 1 (2013): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1400.517 KB) | DOI: 10.19028/jtep.027.1.%p

Abstract

ABSTRACT This paper discussed about the development of electronically controlled fertilizer applicator machine based on modified riding type paddy transplanter tractor. The machine had ability to perform variable rate of application dose using urea, phosphor, and NPK compound. The developed variable rate applicator (VRA) equipped with digital controlled metering devices so that the dose of application can be given accurately and the amount of application can be change in flexible way according to recommended dose. The machine has 4 unit of metering devices, has 8 application rows, and equipped with pneumatic diffusers. RTK-DGPS was used to monitor the position in the field. Performance test has been done for several parameters, included uniformity of air flow at each diffuser, granular fertilizer spreader pattern, and linearity of actual amount of fertilizer with respect to the commanded dose. Average rate of air flow in each diffuser was 0.0073 m3/s, with 7.23 % CV. Total working width of the machine was about 5 m. Field capacity was about 0.12 ha/hours. The results of the tests on metering dose showed that the develop VRA could spread fertilizer uniformly and gave accurate application dose. The yield result showed that uniformity of unhulled rice production was reached 74.7%.Keywords: VRT, URT, fertilization, paddy, precision farming Diterima: 21 Januari 2012 ; Disetujui; 18 Juli 2012  ABSTRAK Makalah ini membahas tentang pengembangan system penjatah pupuk dengan control elektronik pada mesin pemupuk dosis variable menggunakan traktor perawatan lahan sawah yang telah dimodifikasi.Mesin yang dikembangkan memiliki kemampuan menjatah dosis pupuk secara variable untuk jenis pupuk urea, fosfor, dan NPK. Mesin pemupuk dosisvariabel dilengkapi dengan kontrol digital untuk penjatahan pupuk sehingga dapat memberikan takaran pupuk secaraakurat sesuai dengan dosis yang dianjurkan.Mesin memiliki empat unit penjatah pupuk,delapan baris aplikasi pupuk, dan dilengkapi dengan diffuser pneumatic untuk menyebarkan pupuk. RTK-DGPS digunakan untuk memantau posisi mesin di lahan. Uji performansi telah dilakukan untuk mengetahui kinerja mesin pada beberapa parameter pengujian, yaitu: keseragaman aliran udara bertekanan pada komponen diffuser, polase baranpupuk granular, dana kurasi jumlah pupuk yang dijatah terhadap jumlah pupuk yang dianjurkan. Rata-rata debit aliran udara pada komponen diffuser adalah 0.0073 m3/detik dengan nilai CV 7.23%. Lebar kerja mesin 5 meter.Kapasitas lapang efektif mesin0.94 ha/jam. Hasil pengujian pada jumlah dosis yang dikeluarkan menunjukkan bahwa mesin pemupuk dosisvariabel dapat menyebarkan pupuksecara merata dan akurat. Hasil panen gabah pada lahan percobaan menunjukkan nilai tingkat keseragaman hasil produksi gabah mencapai 74.7%. Kata Kunci: Variable Rate Technology, Uniform Rate Technology, pemupukan, padi, pertanianpresisi
Pendeteksian Kerapatan dan Jenis Gulma dengan Metode Bayes dan Analisis Dimensi Fraktal untuk Pengendalian Gulma Secara Selektif Mohamad Solahudin; Kudang Boro Seminar; I Wayan Astika; Agus Buono
Jurnal Keteknikan Pertanian Vol. 24 No. 2 (2010): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (883.723 KB) | DOI: 10.19028/jtep.024.2.%p

Abstract

Abstract Destructive impacts of herbicide usage on environment and water contamination have led to many researches oriented toward finding solutions for their accurate use. If density and weeds species could be correctly detected, patch spraying or spot spraying can effectively reduce herbicide usage. A precision automated machine vision for weed control could also reduce the usage of chemicals. Machine vision is a useful method for segmentation of different objects in agricultural applications, especially pattern recognition methods. Many indices have been investigated by researchers to perform weed segmentation based on color information of the images.  But there is no research that aims to identify weed diversity and its influence on the consumption of herbicides. The purpose of this research is to build a system that can recognize weeds and plants. In this study the relation between three main components (red, green and blue) of the images and color feature extraction (Hue, Saturation, Intensity) used to define weeds and plants density. Fractal dimension used as the methode to define  shape features to distinguish weeds and plants. Weeds and plants were segmented from background by obtaining H value and its shape was obtained by fractal dimension value. The results show fractal dimension value for weeds and plants has specific values. Corn plants have fractal dimension values in the range 1.148 to 1.268, peanut plants have fractal dimension values in the range 1.511 to 1.629, while the weeds have Fractal dimension values in the range 1.325 to 1.497. Keywords: image processing, machine vision, weed control, fractal dimension Diterima: 26 Juli 2010; Disetujui: 4 Oktober 2010
Pengembangan Sistem Aquisis Data Kadar Nitrogen Tanah Berbasis Sensor Infra Merah Sebagai Pedoman Penentuan Dosis Pemupukan Abdul Roni Angkat; I Wayan Astika; Lenny Saulia
Jurnal Keteknikan Pertanian Vol. 25 No. 2 (2011): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (814.777 KB) | DOI: 10.19028/jtep.025.2.%p

Abstract

Abstract Site specific nitrogen fertilizing  needs an accurate map of soil nitrogen content. The use of sensors operated upon the soil is a promising method since the accurate soil sampling methods are costly and time consuming. The objectives of this research are to determine the relation between soil nitrogen level and near infrared spectrum using artificial neural network (ANN) and to develop soil nitrogen content data acquisition system for static dan dynamic measurement. The results showed that the 1506 nm wavelength can be used to estimate the soil nitrogen content. Furthermore it was found that static measurement showed a better correlation (R2= 0.6286) than the dynamic measurement (R2=0.3111). Combined with the developed ATMega32 microcontroller based display recorder, the precision of N content measurement achieved 0.12% wb with 0.1% wb noise. Keywords : NIR, soil nitrogen level, data acquisition, artificial neural network, precision farming Abstrak Pemupukan unsur hara nitrogen spesifik lokasi membutuhkan sebuah peta nitrogen tanah yang akurat. Penggunaan sensor untuk pengujian tanah dapat dijadikan alternatif menggantikan metode konvensional yang membutuhkan waktu yang lama dan biaya yang mahal. Penelitian ini bertujuan untuk membangun hubungan antara komposisi kadar nitrogen tanah dengan spektra Near Infrared (NIR) menggunakan jaringan saraf tiruan (JST) dan membuat sistem akuisisi data kadar nitrogen tanah pada pengukuran statis dan dinamis. Hasil penelitian menunjukkan panjang gelombang spesifik yang dapat digunakan untuk menduga kadar nitrogen tanah adalah pada panjang gelombang 1506 nm. Hubungan antara kadar nitrogen dan tegangan reflektan pada pengukuran statis menunjukkan hubungan yang lebih baik dengan R2 sebesar 0.6286 dibandingkan pada pengukuarn dinamis dengan R2 sebesar 0.3111. Simulasi sistem akuisisi data  kadar nitrogen tanah menggunakan mikrokontroler ATMega 32 yang dilengkapi dengan display memberikan ketelitian sebesar 0.12% berat dengan noise sebesar ±0.1 % berat. Kata kunci: NIR, kadar nitrogen tanah, akuisisi data, Jaringan Saraf Tiruan, pertanian presisi.Diterima:28 Juni 2011 ; Disetujui: 26 September 2011
Pengembangan Model Pendugaan Kadar Hara Tanah Melalui Pengukuran Daya Hantar Listrik Tanah Hasbi Mubarok Suud; M. Faiz Syuaib; I Wayan Astika
Jurnal Keteknikan Pertanian Vol. 3 No. 2 (2015): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1460.707 KB) | DOI: 10.19028/jtep.03.2.%p

Abstract

The key of precision farming is the right decision in terms of time, quality, quantity, and specific location in the farming activities. Soil electrical conductivity (EC) is a variable that is both practical and efficient to implement precision farming. Several methods of EC measurement for precision farming have been developed and applied in precision farming, but inaccuracy on the interpretation of measurement result frequently encountered due to complexity of soil conditions and various geospatial condition. This paper presents a study on EC interpretation by focusing on interaction between moisture content, soil density, and soil N, P, K ratio which affect soil EC measurement. Soil samples of various levels of water, compaction, and N, P, K ratio are measured using a soil box resistivity. The levels of moisture contents were devided into low moisture content that have moisture content less then 20% and high moisture content that have moisture content more than 20%, while the levels of soil compaction were devided into high density condition and low density condition. Regression equations for N, P, and K ratio prediction have been generated and the coefficient of determination (R2) were obtained ranging between 0.6 and 0.89 for low moisture content and
Pengembangan Metode Akuisisi Data Kandungan Unsur Hara Makro Secara Spasial dengan Sensor EC dan GPS Dodik Ariyanto; I Wayan Astika; Radite P.A. S.
Jurnal Keteknikan Pertanian Vol. 4 No. 1 (2016): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1673.155 KB) | DOI: 10.19028/jtep.04.1.%p

Abstract

AbstractSpatial data of soil properties which are accurate and inexpensive is necessary to improve yields and to plan precision farming strategies. Currently the problem lies in the data that are not always updated, because the conventional soil testing is costly and relatively time consuming. This is due to the location of the soil testing laboratory which is far away from the location of the farm. So that the map information soilnutrient content is usually renewed in certain interval of time. In addition, available data are still global and not location specific. Electrical conductivity (EC) can be used as an indicator for measuring the condition of the soil in precision farming applications because of its fast and efficient. This study aims to develop an acquisition method of spatial macro nutrient content as reference for recommendation of fertilizer dossage. The study was conducted on 0.1 ha of land which was divided into 40 grid with a size of 5 x 5 m and planted with peanuts. There was an increase in the average EC 1.40 mS/m (period 1) and 1.36 mS/m (period 2) after tillage with a rotary plow. EC decreased after peanuts cultivation with an average of 4.27 mS/m (period 1) and 0.03 mS/m (period 2). Yields and EC values of each grid had a linear correlation with R2: 0.7005.AbstrakData spasial sifat-sifat tanah yang akurat dan murah sangat diperlukan untuk meningkatkan hasil panen dan merencanakan strategi pertanian presisi. Saat ini permasalahannya terletak pada data yang tidak selalu diperbarui, karena pengujian tanah secara konvensional membutuhkan biaya yang mahal dan waktu yang relatif lama. Hal ini disebabkan lokasi laboratorium pengujian tanah yang letaknya jauh dari lokasi pertanian, sehingga peta yang memberikan informasi kandungan unsur hara tanah biasanya diperbaharui dalam interval waktu tertentu. Selain itu data yang tersedia masih bersifat global dan tidak spesifik lokasi.Nilai konduktivitas listrik tanah (EC) dapat digunakan sebagai indikator untuk mengukur kondisi tanah dalam aplikasi pertanian presisi karena pengukurannya yang cepat dan efisien. Penelitian ini bertujuan untuk mengembangkan metode akuisisi data kandungan unsur hara makro secara spasial sebagai acuan rekomendasi dosis pemupukan. Penelitian ini dilakukan pada 0.1 ha lahan yang dibagi dalam 40 grid dengan ukuran 5 x 5 m dan ditanami kacang tanah. Terjadi peningkatan EC rata-rata 1.40 mS/m (periode1) dan 1.36 mS/m (periode 2) setelah pengolahan tanah dengan bajak rotari. EC mengalami penurunan setelah budidaya dengan rata-rata 4.27 mS/m (periode 1) dan 1.34 mS/m (periode 2). Hasil dan nilai-nilai EC setiap grid memiliki korelasi linear dengan R2: 0,7005.
Klasifikasi Inti Sawit Berdasarkan Analisis Tekstur dan Morfologi Menggunakan K-Nearest Neighborhood (KNN) Okta Danik Nugraheni; I Wayan Astika; I Dewa Made Subrata
Jurnal Keteknikan Pertanian Vol. 5 No. 2 (2017): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1820.798 KB) | DOI: 10.19028/jtep.05.2.%p

Abstract

AbstractAs the by product of palm oil, palm kernel contains high-quality oil. The manual inspection has low efficiency, subjective and inconsistent results due different perspectives between the buyer and the seller regarding the kernel quality. This research aims to determine the quality of palm kernel using the texture and morphological image analysis. Texture analysis performed on the kernel images separation to obtain the value of the mean, variance, skewness, kurtosis, entropy, energy, contrast, correlation, and homogeneity. Morphology analysis performed on the kernel images separation to obtain the value of the area, perimeter, metrics, and eccentricity. The classification was performed by KNearest Neighbor (KNN) method. Based on a simulation, the classification system could classify the palm kernel into the whole kernels, broken, and shells. The highest accuracy of 66.59 % was obtained by using a combination of mean and morphology when k was 1. AbstrakSebagai produk samping dari buah kelapa sawit, inti sawit mengandung minyak berkualitas tinggi. Penentuan mutu inti secara manual seringkali mengakibatkan terjadi konflik antar pembeli dan penjual. Proses penentuan mutu secara manual memiliki kekurangan pada rendahnya efisiensi, subjektif, dan tidak konsisten. Penelitian ini bertujuan untuk mempelajari kualitas inti sawit menggunakan analisis tekstur dan morfologi. Analisis tekstur dilakukan terhadap hasil pemisahan untuk mendapatkan nilai mean, variance, skewness, kurtosis, entrophy, energy, contrast, correlation, dan homogenity. Analisis morfologi dilakukan terhadap hasil pemisahan untuk mendapatkan nilai area, perimeter, metric, dan eccentricity. Dalam penelitian ini, metode klasifikasi yang digunakan adalah metode K-Nearest Neighbor (KNN). Berdasarkan simulasi, dapat disimpulkan bahwa sistem dapat diklasifikasikan menurut inti utuh, inti pecah, dan cangkang. Akurasi tertinggi 66.59% diperoleh dengan menggunakan kombinasi mean dan morfologi ketika k adalah 1.
Pemodelan Sorpsi Isotermi dan Pendugaan Umur Simpan Beras Pratanak pada Kemasan Plastik Film Hasniar .; Rokhani Hasbullah; I Wayan Astika
Jurnal Keteknikan Pertanian Vol. 7 No. 1 (2019): JURNAL KETEKNIKAN PERTANIAN
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (821.269 KB) | DOI: 10.19028/jtep.07.1.75-82

Abstract

AbstractMoisture sorption isotherms have an important role in the quantitative approach to predict shelf life of the food due to their sensitivity to moisture changes. The objectives of this research were to determine the equilibrium moisturecontent ofparboiled rice,to findthe bestmodel todescribe thesorption isotherm curve ofparboiled rice, and to predict shelf-life of the parboiled rice during storage. Moisture sorption isotherms of parboiled rice were determined using the standard gravimetric static methodat temperature of 30o, which involves the use saturated salt solution to maintain a fixed equilibrium relative humidity. To achieve different relative humidity environments, aqueous solutions of NaOH, MgCl2, Mg(NO3)2, KI, NaCl, KCl, Na2SO4, and NH4H2PO4 to have relative humidity of 7%, 33%, 52%, 69%, 75%, 84%, 87% dan 92%. Five gram samples of parboiled rice were stored in dessicators. The samples were weighed periodically until they constant. The Hasley, Oswin, Henderson, Chen-Clayton and Caurie models were applied to describe the relationship between equilibrium moisture content and relative humidity. The mean relative deviation was used to evaluate the goodness of each models. The result showed that equilibrium moisture content of parboiled rice fromrelative humidity of 7%, 33%,52%,69%, 75%, 84%, 87% dan 92% respective of 6.93% dry basis (db), 11.09%db, 14.22% db, 15.86% db, 17.05% db, 19.68% db, 23.92% db, dan 25.59% db. Water sorption isotherm parboiled rice had sigmoid shape. The Oswin model was found to be the best model to describe the experimental sorption data for parboiled rice was the value MRD is 3.85 and R2 is 0.98. Parboiled rice packaged with HDPE, LDPE, and PP have a predict shelf-life respective of 2.2, 2.3 and 8.8 year.AbstrakSorpsi isotermi memiliki peran penting dalam pendekatan kuantitatif untuk menduga umur simpan bahan yang rentan terhadap perubahan kelembaban. Tujuan dari penelitian ini adalah untuk menentukan kadar air kesetimbangan beras pratanak, menentukan model yang tepat dalam mendeskripsikan pola kurva sorpsi isotermi beras pratanak, dan memprediksikan umur simpan beras pratanak dengan metode kadar air kritis. Sorpsi isotermi beras pratanak ditentukan dengan menggunakan metode gravimetri statis pada suhu 30o, dengan menggunakan larutan garam jenuh untuk mengatur kelembapan relatif. Untuk mencapai lingkungan kelembaban relatif yang berbeda, larutan NaOH, MgCl2, Mg(NO3)2, KI, NaCl, KCl, Na2SO4, dan NH4H2PO4 dengan kelembaban relatif berturut turut7%,33%,52%,69%,75%,84%, 87%dan92%.Limagramsampel beraspratanakdisimpandalam desikator. Sampel ditimbang secara berkala hingga mencapai berat konstan.Model Hasley, Oswin, Henderson, Chen-Clayton dan Caurie diterapkan untuk menggambarkan hubungan antara kadar air kesetimbangan dan kelembaban relatif. Mean Relative Determination digunakan untuk mengevaluasi ketepatan masing-masing model. Hasil penelitian menunjukkan bahwa kadar air kesetimbangan beras pratanak pada RH 7%, 33%, 52%, 69%, 75%, 84%, 87% dan 92% berturut-turut adalah 6.93% bk, 11.09% bk, 14.22% bk, 15.86%bk, 17.05% bk, 19.68% bk, 23.92% bk, dan 25.59% bk. Kurva sorpsi isotermi beras pratanak memiliki bentuk sigmoid. Model Oswinadalah model yang paling tepat dalam menggambarkan sorpsi isotermi beras pratanak dengan nilai MRD sebesar 3.85 dan R2sebesar 0.98. Beras pratanak yang dikemas dengan HDPE, LDPE, dan PP memiliki umur simpan berturut 2.2 tahun, 2.3 tahun dan 8.8 tahun.