Andi Wijaya
Prodia Clinical Laboratory, Jl. Cisangkuy No.2, Bandung

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Chronodisruption and Obesity Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 7, No 3 (2015)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v7i3.184

Abstract

BACKGROUND: Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders.CONTENT:Regularly alternating periods of light and darkness, such as normally occur with the rising and the setting of the sun, are essential for the maintenance of undisturbed circadian rhythms in all organisms including humans. The light-dark environment, as detected by specialized photoreceptors in the retinas, impacts the endogenous circadian clock in the anterior hypothalamus, the suprachiasmatic nuclei. These nuclei, via both neural and humoral signals, communicate with cells throughout the organism to establish regular circadian rhythms. The introduction of artificial sources of light roughly 150 years ago has significantly undermined the naturally occurring light-dark environment and, likewise, has disturbed circadian rhythms since light is now available at unusual times, i.e., at night. Light at night is known to cause circadian disruption and melatonin suppression. Many potentially pathophysiological consequences of these artificial light-mediated changes, include cancer, cardiovascular diseases, insomnia, metabolic syndrome, diabetes, and cognitive disorders may be aggravated by the increased exposure to light at night, which is inevitable in well-developed societies that have undergone extensive electrification.SUMMARY: Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding, calorie restriction and intermittent fasting, provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat diet leads to disrupted circadian expression of metabolic factors and obesity.KEYWORDS: obesity, circadian clock, metabolism, chronodisruption
Adipose Tissue, Inflammation (Meta-inflammation) and Obesity Management Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 7, No 3 (2015)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v7i3.185

Abstract

BACKGROUND: Obesity-induced inflammation contributes to the development of type 2 diabetes, metabolic syndrome, and cardiovascular disease.CONTENT:The last decade has seen a sharp increase in our appreciation for the macrophage as a critical regulator of metabolic status in obesity. Activation of adipose tissue (AT) macrophages within fat depots is coupled with the development of obesity-induced proinflammatory state and insulin resistance (IR). The activation of classically activated M1 macrophages at the expense of anti-inflammatory M2 macrophages has been causally linked to the development of AT inflammation and metabolic syndrome, a pathophysiological state aptly termed as ‘metainflammation’. It is recognized that several proinflammatory cytokines, including interleukin (IL)-1β, are implicated in disrupting insulin signaling. Our developing appreciation of links among obesity, inflammation and cardiovascular disease will require multiple complementary approaches to leverage new concepts into translatable outcomes. Careful characterization of human patients, particularly analysis of AT distribution, will be needed to stratify subjects that are most likely obese/metabolically healthy from those that are obese/metabolically unhealthy.SUMMARY: It has been suggested that individuals with the condition known as metabolically healthy obese (MHO) may not have the same increased risk for the development of metabolic abnormalities as their non-metabolically healthy counterparts. A complications-centric model for the medical management of obesity emphasizes the identification and staging of complications, and treatment paradigm directed at patients who would gain the most benefit from weight loss.KEYWORDS: obesity, inflammation, insulin resistance, M1/M2 macrophage.
Metabolomics: An Emerging Tool for Precision Medicine Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 13, No 1 (2021)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v13i1.1309

Abstract

BACKGROUND: Metabolomics is a developed technology that comprehensively analyzes the metabolites in biological specimens. It appears to be a prospective method in the practice of precision medicine.CONTENT: Metabolomic technologies currently surpass beyond the traditional clinical chemistry techniques. Metabolomic is capable to perform a precise analysis for hundreds to thousands of metabolites, therefore provide a detailed characterization of metabolic phenotypes and metabolic derangements that underlie disease, to represent an individual’s overall health status, furthermore to discover new precise therapeutic targets, and discovery of biomarkers, either for diagnosis or therapy monitoring purpose.SUMMARY: Adequate data processing and quantification methods are still needed to be developed to boost integrated -omics as a powerful clinical practice platform.KEYWORDS: metabolomic, precision medicine, phenotyping, biomarker, nutritional pattern
Mesenchymal Stem Cell Secretome: Cell-free Therapeutic Strategy in Regenerative Medicine Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 11, No 2 (2019)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v11i2.839

Abstract

BACKGROUND: Mesenchymal stem (stromal) cells (MSCs) have a multipotent character, able to differentiate into several cell types, thus MSC serve as a cell reservoir for regenerative medicine. MSC therapeutic potency more associated to their immunosuppressive and anti-inflammatory properties rather than the multipotency, by its mechanism to secrete soluble factors with paracrine actions.CONTENT: MSC paracrine function was known to mediated partly by extracellular vesicles (EVs), which were released predominantly from the endosomal compartment contained in MSC secretome. EV contain a cargo bring micro RNA (miRNA), messenger RNA (mRNA), and proteins from their cells of origin, propose EV as a novel alternative to whole cell therapies, regarding the benefit of EV in safety and easier storage compared to the parent cells.SUMMARY: The discovery of EVs including exosomes in MSC secretome as key of stem cells beneficial function lead to the future hope of using cell-free regenerative therapies.KEYWORDS: MSC, secretome, conditioned media, extracellular vesicle, exosome
Artificial Intelligent in Healthcare Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 11, No 2 (2019)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v11i2.844

Abstract

BACKGROUND: Giant transformations are going on currently in health care, and the greatest force behind this phenomenon is data.CONTENT: Big data has arrived into medicine field, lead to potential enhancement in accountability, quality, efficiency, and innovation. Most updated, artificial intelligence (AI) and machine-learning (ML) techniques rapidly developed, bring forth the big data analysis into more useful applications, from resource allocation to complex disease diagnosis. To realize this, a very large set of health-care data is needed for algorithms training and evaluation, including patients’ treatment data, patients respond to treatment, and personal patient information, such as genetic data, family history, health behavior, and vital signs.SUMMARY: Precision Health involving preventive, predictive, personalized and precise. The arrival of AI and ML will enhance and facilitates the improvement of this relationship through better accuracy, productivity, and workflow, thus develop a health system that will go beyond just curing disease, but further into wellness that preventing disease before it strikes, thus the patient–doctor bond is expected to be reformed and not be eroded.KEYWORDS: artificial intelligence, machine learning, deep learning, electronic health records, big data
Current Progress in Adipose Tissue Biology: Implications in Obesity and Its Comorbidities Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 12, No 2 (2020)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v12i2.1171

Abstract

BACKGROUND: Obesity has been decades become a highly interest study, accompanied by the realization that adipose tissue (AT) plays a major role in the regulation of metabolic function.CONTENT: In past few years, adipocytes classification, development, and differentiation has been significant changes. The white adipose tissue (WAT) can transform to a phenotype like brown adipose (BAT) type and function. Exercise and cold induction were the most common factor for fat browning; however batokines such as fibroblast growth factor (FGF)-21, interleukin (IL)-6, Slit homolog 2 protein (SLIT2)-C, and Meteorin-like protein (METRNL) perform a beneficial browning action by increasing peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α protein levels, a key factor to stimulate mitochondrial biogenesis and uncoupling Protein 1 (UCP1) transcription, thus change the WAT phenotype into beige.SUMMARY: AT recently known as a complex organ, not only bearing a storage function but as well as the master regulator of energy balance and nutritional homeostasis; brown and beige fat express constitutively high levels of thermogenic genes and raise our expectation on new strategies for fighting obesity and metabolic disorders.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, inflammation, IR, metabolic disease