Muhammad Febrian Rachmadi
Faculty of Computer Science, Universitas Indonesia, Gedung A Fasilkom Lt. 2 No. 1231, Kampus Baru UI Depok, Jawa Barat, 16424, Indonesia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

BEAGLEBOARD EMBEDDED SYSTEM FOR ADAPTIVE TRAFFIC LIGHT CONTROL SYSTEM WITH CAMERA SENSOR Muhammad Febrian Rachmadi; F Al Afif; M Anwar Ma'sum; M Fajar; A Wibowo
Jurnal Ilmu Komputer dan Informasi Vol 5, No 2 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1268.713 KB) | DOI: 10.21609/jiki.v5i2.190

Abstract

Traffic is one of the most important aspects in human daily life because traffic affects smoothness of capital flows, logistics, and other community activities. Without appropriate traffic light control system, possibility of traffic congestion will be very high and hinder people’s life in urban areas. Adaptive traffic light control system can be used to solve traffic congestions in an intersection because it can adaptively change the durations of green light each lane in an intersection depend on traffic density. The proposed adaptive traffic light control system prototype uses Beagleboard-xM, CCTV camera, and AVR microcontrollers. We use computer vision technique to obtain information on traffic density combining Viola-Jones method with Kalman Filter method. To calculate traffic light time of each traffic light in intersection, we use Distributed Constraint Satisfaction Problem (DCSP). From implementations and experiments results, we conclude that BeagleBoard-xM can be used as main engine of adaptive traffic light control system with 91.735% average counting rate. Lalu intas adalah salah satu aspek yang paling penting dalam kehidupan sehari-hari manusia karena lalu lintas memengaruhi kelancaran arus modal, logistik, dan kegiatan masyarakat lainnya. Tanpa sistem kontrol lampu lalu lintas yang memadai, kemungkinan kemacetan lalu lintas akan sangat tinggi dan menghambat kehidupan masyarakat di perkotaan. Sistem kontrol lampu lalu lintas adaptif dapat digunakan untuk memecahkan kemacetan lalu lintas di persimpangan karena dapat mengubah durasi lampu hijau di setiap persimpangan jalan tergantung pada kepadatan lalu lintas. Prototipe sistem kontrol lampu lalu lintas menggunakan BeagleBoard-XM, kamera CCTV, dan mikrokontroler AVR. Peneliti menggunakan teknik computer vision untuk mendapatkan informasi tentang kepadatan lalu lintas dengan menggabungkan metode Viola-Jones dan metode Filter Kalman. Untuk menghitung waktu setiap lampu lalu lintas di persimpangan, peneliti menggunakan Distributed Constraint Satisfaction Problem (DCSP). Dari hasil implementasi dan percobaan dapat disimpulkan bahwa BeagleBoard-XM dapat digunakan sebagai mesin utama sistem kontrol lampu lalu lintas adaptif dengan tingkat akurasi penghitungan rata-rata sebesar 91.735%.
SIMULATION OF LANDMARK APPROACH FOR WALL FOLLOWING ALGORITHM ON FIRE-FIGHTING ROBOT USING V-REP Sumarsih Condroayu Purbarani; Qurrotin A’yunina; Muhammad Anwar Ma’sum; Muhammad Febrian Rachmadi
Jurnal Ilmu Komputer dan Informasi Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.768 KB) | DOI: 10.21609/jiki.v8i2.308

Abstract

Autonomous mobile robot has been implemented to assist humans in their daily activity. Autonomous robots have also contributed significantly in human safety. Autonomous mobile robot have been implemented to assist humans in their daily activity. Autonomous robots Have also contributed significantly in human safety. An example of the autonomous robot in the human safety sector is the fire fighting robot, which is the main topic of this paper. As an autonomous robot, the fire fighting robot needs a robust navigation ability to execute a given task in the shortest time interval. Wall-following algorithm is one of several navigating algorithm that simplifies this autonomous navigation problem. As a contribution, we propose two methods that could be combined to make the existing wall-following algorithm more robust. The combined wall-flowing algorithm will be compared to the original wall-following algorithm. By doing so, we could determine which method has more impact on the robot’s navigation robustness. Our goal is to see which method is more effective when combined with the wall-following algorithm.
PEER ASSESSMENT RATING (PAR) INDEX CALCULATION ON 2D DENTAL MODEL IMAGE FOR OVER JET, OPEN BITE, AND TEETH SEGMENTATION ON OCCLUSION SURFACE Muhammad Febrian Rachmadi; Ratna Rustamadji; Miesje Karmiati Purwanegara; sani Muhammad Isa; Benny Hardjono
Jurnal Ilmu Komputer dan Informasi Vol 7, No 1 (2014): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1186.131 KB) | DOI: 10.21609/jiki.v7i1.256

Abstract

Abstract Malocclusion is a clinical symptom, in which the teeth of maxilla and mandible are not located at the proper location. If malocclusion left untreated, it can lead to complications in the digestive system, headache, and periodontal disease disorders. Malocclusion problems involving abnormalities of teeth, bones, and muscles around the jaw are obligation of orthodontic specialists to treat them. The treatments can be varying based on the type of malocclusion, including tooth extraction and tooth braces. To know certain degree of malocclusion experienced by the patient, an assessment method called Peer Assessment Rating (PAR) Index is usually used by the specialist. To help the works of orthodontic specialists in Indonesia, a new automated calculation system based on 2D image of tooth model for PAR Index is being developed. In this paper, the calculation system for over-jet, open-bite, and teeth segmentation is developed. The result of the developed system is then compared with manual assessment done by orthodontic specialist, in order to verify the accuracy of the system.